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HISTORY

Lord Rayleigh (John William Strutt, 3rd Baron Rayleigh
[1842-1919]), “The Theory of Sound, Vol. 2” (1896):

“One of the most striking of the phenomena connected with the
propagation of sound within closed buildings is that presented by
“whispering galleries”, of which a good and easily accessible
example is to be found in the circular gallery at the base of the
dome of St. Paul’s cathedral”
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Figure: St. Paul’s Cathedral, London. Architect: Sir Christopher Wren
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Figure: Whispering Gallery in St. Paul’s Cathedral
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Rayleigh’s View

”In the opinion of the Astronomer Royal (Sir George Biddell Airy
[1801-1892]) the effect is to be ascribed to reflection from the
surface of the dome overhead, and is to be observed at the point
of the gallery diametrically opposite to the source of sound”

”Judging from some observations that I have made in St. Paul’s
whispering gallery, I am disposed to think that the principal
phenomenon is to be explained somewhat differently. The
abnormal loudness with which a whisper is heard is not confined to
the position diametrically opposite to that occupied by the
whisperer ....”
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Rayleigh’s experiment - 1
“The whisper seems to creep around the gallery horizontally, not
necessarily along the the shorter arc, but rather along that arc
toward which the whisperer faces”

“Especially remarkable is the narrowness of the obstacle, held close
to the concave surface, which is competent to intercept most of
the effect.” 6/44



Rayleigh’s Experiment -2

Figure: Proc. Royal Institution Great Britain, January, 1904
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Rayleigh’s Ray Picture
Suppose that a source near the wall emits sound with a maximum
angular spread of θ. The higher the frequency the smaller the
angle θ. Then in a ray picture, the minimum distance of a ray
from the center is bcosθ
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Rayleigh’s Wave Theory

“The Problem of the Whispering Gallery”, Phil. Mag. 20, 1001,
(1910)

“I have often wished to illustrate the matter further on distinctly
wave principles, but only recently have recognized that most of
what I sought lay as it were under my nose. The mathematical
solution in question is very simple in form, although the reduction
to numbers, in the special circumstances, presents certain
difficulties.”

Analysis of transmissive wall:

“Further Applications of Bessel’s Functions of High Order to the
Whispering Gallery and Allied Problems”, Phil. Mag. 27, 100
(1914).
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Rayleigh’s wave theory - 2

v = ∇ψ = velocity field
ψ = velocity potential

4ψ−
1

v2
∂2ψ

∂t2
= 0 (1)

Elementary solution:

ψ = Jn(kr)cos(kvt − nθ) (2)

Boundary condition: radial velocity vr = ∂ψ/∂r must be zero on
boundary r = b:

J ′n(kb) = 0 ⇒ kb = j ′ns , s = 1, 2, · · · (3)
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Rayleigh’s wave theory - Eigensolution

ψns(r , θ, t) = Jn(
j ′nsr

b
) cos(

j ′nsv

b
t − nθ)

frequency = ω =
j ′nsv

b
(dispersion relation) (4)

Basic property of Bessel functions Jn(nz), J
′
n(nz)- Transition:

Cuts off exponentially as z decreases from 1.

Oscillates as z increases from 1.

Compare to transition of harmonic oscillator:

J ′′n (x) +
1

x
J ′n(x) + (1 −

n2

x2
)Jn(x) = 0, y ′′(t) +ω2y(t) = 0 . (5)

Thus j ′n1 is slightly larger than n, and for r slightly less than b, the
eigensolution ψn1 is negligible!
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Quantitative treatment of concentration near boundary
(large n):

Cut-off of Jn(nz) for z < 1 and large n comes from factor
exp(−nξ), where ξ ≈ (1 − z2)3/2/3. Thus down by factor 1/e at

z = 1 −
1

2

[
3

n

]2/3
. (6)

Our wave function Jn(j
′
nsr/b) down by 1/e for

r

b
=

n

j ′ns

[
1 −

1

2

[
3

n

]2/3]
= 1 − 2−1/3

(
|a′s |+ (3/2)2/3

)
n−2/3, (7)

where a′s is the s-th negative zero of Ai ′(x). (From Olver’s
asymptotic expansion of j ′ns , uniform in s.)
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Concentration near boundary:

b − r = 2−1/3

(
|a′s |+ (3/2)2/3

)
n−2/3b (8)

a′1 = −1.0187 , a′2 = −3.2481 , · · ·

a′s ∼ −
[3π

8
(4s − 3)

]2/3
, s → ∞ . (9)

The higher the frequency, the sharper the concentration near the
boundary! This is in accord with the ray theory, since the higher
the frequency the smaller the maximum angle θ of emitted rays:

b − r = b(1 − cos θ) . (10)
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CSR in Storage Rings - Toroidal Vacuum Chamber

Solve for longitudinal electric field Eθ(r , θ, z , t) produced by the
beam at the position of beam (r = R , z = 0), the Wake Field,
which determines the dynamics of the bunch. The work done by
the wake field per unit time is the negative of the Radiated Power.

Since the field is concentrated near r = b, the result is nearly the
same for a “pillbox” chamber with a = 0. Let’s give equations for
pillbox.
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Solution in Terms of Bessel Functions - 1
R. W. and P. Morton, “Fields Excited by a Beam in a Toroidal
Vacuum Chamber”, SLAC-PUB-4562 (1988), Part. Accel. 25, 113
(1990). Cited as W & M in following.

Write Maxwell’s equations for Laplace-Fourier transforms of field
components, e.g.,

Êz(r , n, p,ω) =
1

2π

∫2π
0

dθ e−inθ 1

g

∫g
−g

dz cos(αp(z + g))

· 1

2π

∫∞
0

dt e iωtEz(r , θ, z , t) , (11)

where αp = πp/h and Im ω > 0. The usual Laplace variable is
s = −iω. Fourier transform in time won’t do, because fields do
not decay at large t!

All fields can be expressed algebraically in terms of Êz , Ĥz and
their r -derivatives. Also, Êz , Ĥz satisfy Bessel equations in r , with
sources.
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Solution in Terms of Bessel Functions - 2

Boundary conditions on the top and bottom walls met by right
choice of Fourier series in z , and on the cylindrical wall by the right
linear combination of Bessel solutions.

Assume charge density of the form

ρ(r , θ, z , t) = qλ(θ−ω0t)H(z)
δ(r − R)

R
. (12)

(Rigid bunch, vertical ribbon, zero emittance).

Since the inhomogeneous Bessel equation can be solved for any
source, this restriction can be lifted.

ρ̂(n, p,ω, r) =
qHpλn

2πi(ω− nω0)

δ(r − R)

R
. (13)
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Solution for longitudinal field - 1

Êθ(r , n, p,ω) = −
qβcZ0λn

4(ω− nω0)

·
[
ω

c

(
J ′n(γpr)

J ′n(γpb)
sn(γpb, γpR) + θ(r − R)sn(γpr , γpR)

)
+

n

βR

(
αp

γp

)2( Jn(γpr)

Jn(γpb)
pn(γpb, γpR) + θ(r − R)pn(γpr , γpR)

)]
γ2p = (ω/c)2 − α2

p , αp = πp/h ,

pn(x , y) = Jn(x)Yn(y) − Yn(x)Jn(y) ,

sn(x , y) = J ′n(x)Y
′
n(y) − Y ′n(x)J

′
n(y) (14)

Displays the same concentration near the outer wall as in
Rayleigh’s case and similar resonances!
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Whispering Gallery Resonances
Resonances result from boundary conditions, as in Rayleigh theory,
and give poles in the ω-plane:

J ′n(γpb) = 0 (TE ) , Jn(γpb) = 0 (TM) ,

γ2p = (ω/c)2 − (πp/h)2 . (15)

Unusual nomenclature: TE and TM fields transverse to z-axis
(vertical)

Radial wave functions similar for torus and pillbox:

Here s = 0 is s = 1 in present notation.
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Solution for longitudinal field - 2
The field (averaged over transverse distributions) can be expressed
in terms of the impedance Z (n,ω):

Eθ(n,ω) = −2πRZ (n,ω)I (n,ω) , I (n,ω) =
iqω0λn

2π(ω− nω0)
(16)

Wake voltage is given by inverse Laplace-Fourier transform,

V (θ, t) =
∑
n

e inθ
∫
Im ω=v

e−iωtZ (n,ω)I (n,ω) , v > 0 , (17)

and the power is P = −dW /dt, where W is the work done per
unit time by the wake field,

P(t) = qω0

∑
n

e inω0tλ∗n

∫
Im ω=v

dωe−iωtZ (n,ω)I (n,ω) . (18)
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Wake voltage and power spectrum - 1

To compute V and P, move ω-contour to semicircle in lower
half-plane. We encounter poles of Z at TE and TM resonant
modes and also WG (wave guide) poles at the following
frequencies and their negatives:

ωTE
nps =

c

b

[
j ′2ns + (αpb)

2
]1/2

, s = 1, 2, · · ·

ωTM
nps =

c

b

[
j2ns + (αpb)

2
]1/2

, s = 1, 2, · · ·

ωWG
p = αpc (19)

Wave guide poles from zeros of γ2p.

Label these frequencies by a multi-index j with values
(TE , n, p, s), (TM, n, p, s), (WG , p)

We also encounter poles of I (n,ω) at frequencies ω = nω0.
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Wake voltage: a new expression
Assuming that no ωj coincides with one of the nω0,

V (θ, t) =
∑
n

e inω0

∫
Im ω=v

dωe−iωtZ (n,ω)I (n,ω)

= V1(θ−ω0t) + V2(θ, t) = qω0

∑
n

λnZ (n, nω0)e
in(θ−ω0t)

+qω0

∑
n

λne
inθ

∑
j

[
e−iωj tR(n,ωj)

ωj − nω0
−

e iωj tR(n,−ωj)

ωj + nω0

]
.

The term V1 from poles of I (n,ω) at ω = nω0 is the known
expression, usually written with Z (n, nω0) = Z (n). It depends only
on the distance from the reference particle and corresponds to
waves with phase velocity equal to particle velocity.

If nω0 should (accidentally) hit one of the ωj , then V1 and V2 are
separately infinite, but cancel to a finite result. The incorrect
Fourier transform gives infinity!!
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Discussion of new term in the wake voltage
The new term is a time-dependent wake, not depending only on
the distance from the reference particle:

V2(θ, t) = qω0

∑
n

e inθλn
∑
j

[
e−iωj tR(n,ωj)

ωj − nω0
−
e iωj tR(n,−ωj)

ωj + nω0

]
.

It represents various waves of incoherent frequencies moving in
both directions. The corresponding term in the power oscillates in
sign, so energy is leaving and entering the field.

But when wall resistance is included,

lim
t→∞V2(θ, t) = 0 (20)

In practice, ∞ is at most a few turns.

There is also a contribution from a branch point at ω = 0 which
vanishes as well in the limit. (Skin depth contains

√
ω.)
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Wake and power at large t with wall resistance
If Z is computed with wall resistance, as was done in W & M, then
at large t,

V (θ, t) = qω0

∑
n

λnZ (n, nω0)e
in(θ−ω0t)

P = qω0

∑
n

|λn|
2Re Z (n, nω0) . (21)

Power spectrum for SLAC damping ring parameters, resistive
toroidal chamber: (each peak composed of many n with
nω0 ≈ ωr ; TE and TM alternate, n = 23000 − 105000)
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Forward from 1988 to 2007
e-mail from Jack Bergstrom, Canadian Light Source:

“Your · · · · · · 1990 paper (with Morton) predicted that the
radiation impedance of a closed ”pillbox” dipole-magnet vacuum
chamber should exhibit resonances, while the open parallel-plate
model (used by most folks) of course does not. I think we are now
seeing those resonances, both the TE and the TM modes, in our
coherent-IR studies, just as your formalism predicts.”

Who is Jack Bergstrom?

Professor Emeritus, Nuclear Physics, University of
Saskatchewan, 30 years of teaching
Consultant for CLS, expert on instrumentation for storage
rings, fast feedback, etc.
Worked with Jeff Corbett on Australian Light Source,
diagnostic beam line
Acute eye for patterns in data, does extensive reading
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CSR Spectra from Canadian Light Source (CLS) - 1

Not noise! High resolution spectrum from Michelson
interferometer, Bruker IFS 125 HR, resolution to
< 0.001cm−1.

25/44



Bruker FTIR (Frustrated Total Internal Reflection)
Spectrometer

Beam is split, path length difference between two beams is
scanned. Cosine Fourier transform of intensity vs. path difference
gives power spectrum (real part of impedance times bunch
spectrum). 26/44



CSR Spectra from Canadian Light Source (CLS) - 2

Interferograms extremely invariant to changes in machine
setup and optics: energy (1.5 - 2.9 GeV), fill pattern (single or
multibunch), CSR in steady or bursting mode, bunch length
(controlled by momentum compaction), IR optics, etc.

Effect of optical instrumentation ruled out certainly. Big
changes in the IR beam line optics, and replacement of the
front end optics in the spectrometer, occurred over three
years, but interferograms were unchanged!

The number of peaks increases with increasing resolution.

All this suggests that the peaks are resonances of the vacuum
chamber, not affected by details of the beam.
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Spectra at Brookhaven NSLS-VUV light source - 1
Bergstrom somehow associated the spiky graph in W & M with
the CLS experimental spectrum. He made a quantitative fit of
theoretical frequencies with CLS in a limited range, and later with
NSLS-VUV data over a large range from

G. L. Carr, S. L. Kramer, N. Jisrawi, L. Mihaly, and D. Talbayev,
Proc. 2001 Part. Accel. Conf., Chicago, p.377.
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Spectra at Brookhaven NSLS-VUV light source - 2
High frequency data (CSR or ISR) from interferometer (Carr). Low
frequency data (CSR) from microwave techniques - antenna, wave
guides, frequency analyzer (Kramer).

Figure: Black circles from interferometer, open circles from microwave
techniques
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Spectrum from toroidal (or pillbox) model of VUV chamber
Neglecting the straights, the VUV vacuum chamber is well
modeled by a smooth torus with w = 8cm, h = 4cm. The bending
radius R = 1.91m. I put the beam at r = R, and adjust the outer
radius to b = 1.948m to fit the data; thus beam is 2mm off center.
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Comparison of VUV spectrum with experiment - 1
Convolve theoretical spectrum with narrow Gaussian to
average over small structures and perhaps imitate
experimental resolution
Compare frequencies of resulting smoothed spectrum to
experiment, but do not worry about heights of peaks
(influenced by optical beam line attenuation, bunch spectrum,
resolution, etc.)

Figure: Theoretical spectrum convolved with narrow Gaussian
31/44



Comparison of VUV spectrum with experiment - 2

Table: Theoretical frequencies compared to data

Exp. Thy. Exp. Thy.
0.80 0.827 6.10 6.31
0.93 — 7.25 7.32
1.32 1.21 9.00 8.32
1.57 1.60 10.0 9.29

2.10* 2.04 11.1 10.28
2.40 2.48 12.0 11.29

2.76* 2.94 12.8 12.33
3.10* 3.26 13.8 13.31
3.66* 3.62 15.0 14.3
3.88* 3.90 15.7-15.9 15.3
4.20 4.38 16.7 16.3
5.25 5.34 18.0 17.3

18.8* 18.3
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Comparison of VUV spectrum with experiment - 3

Figure: Comparison of experimental and theoretical spectra. Solid lines
are from experiment, dashed lines from theory.

33/44



Comparison to experiment - discussion

The experimental lines at 0.80cm−1 and 0.93cm−1 came from
two different microwave bands (different wave guides, hence
different normalization), and may not really correspond to two
separate peaks (Kramer’s comment). Anyway, they are close
to the theoretical lowest mode, a TE, at 0.827cm−1.

The signal below the CSR threshold, k < 0.5cm−1, is
associated with microwaves from a machine impedance due to
bellows. This interpretation is consistent with a streak camera
measurement.

The experimental line at 1.32cm−1 is precious to the
comparison, since it corresponds to the only TM mode in the
theory that really stands out after the smoothing by
convolution. Kramer thinks this line is authentic, even though
it was not seen by Carr’s interferometer.
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CLS dipole chamber - a challenge for theoretical modeling

The CLS has two special vacuum chamber structures at dipoles
associated with IR beam lines, involving large excursions in the
outer chamber wall.

Figure: Flared vacuum chamber, “effective distance” from beam to wall
d = 21cm, vs. 3.2cm in normal chamber of straights and other dipoles.
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Fit to smooth chamber theory with effective chamber
radius

Bergstrom could fit CLS spectrum over a limited frequency domain
using the smooth chamber theory with b = R + d , d = 21cm.
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Experiment to modify vacuum chamber at CLS

CLS built an apparatus to modify the vacuum chamber by
dropping a metallic tube, a “plunger” , through an existing
vacuum port. Bergstrom made a heuristic calculation (lacking a
satisfactory theory) predicting that a structure at 7cm path
difference in the interferogram would change with the plunger in.
An experiment gave a vague indication of the expected change,
but needs to be repeated with a better signal-to-noise ratio.

The calculation: integrating the smooth chamber impedance with
variable wall radius b(θ), over length of chamber.
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Pillbox with a side box as a model of CLS dipole chambers

High frequency standing wave modes in the “cavity” expressed by
Bessel functions of order mπ/α, large m. Through mode matching
these can overlap with usual whispering gallery modes of the
unperturbed pill box.

Expect some vestige of both pillbox and cavity modes in the
solution, and excitation of resonances at any multiple of the
revolution frequency, since all n-modes are coupled. Thus a much
more complicated spectrum!
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Equations for the side box model - 1
Equations for Ez and Hz remain uncoupled.
In the cavity region Ez ,Hz expanded in sin(m̂θ), cos(m̂θ)
with m̂ = πm/α to meet boundary conditions on end walls.
To meet boundary conditions on outer wall at
r = b+ = b + d , Laplace-Fourier coefficients have the form

E c
zmp(r ,ω) = amppm̂(γpr , γpb+) ,

Hc
zmp(r ,ω) = cmpqm̂(γpr , γpb+) . (22)

Equations involve all the cross products, in general for
non-integer order µ:

pµ(x , y) = Jµ(x)Yµ(y) − Yµ(x)Jµ(y) ,

qµ(x , y) = Jµ(x)Y
′
µ(y) − Yµ(x)J

′
µ(y) ,

rµ(x , y) = J ′µ(x)Yµ(y) − Y ′µ(x)Jµ(y) ,

sµ(x , y) = J ′µ(x)Y
′
µ(y) − Y ′µ(x)J

′
µ(y) . (23)
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Equations for the side box model - 2
The coefficients cmp for Hz in the cavity satisfy the set of equations

qm̂(γpb, γpb+)cmp =
∑
m′

L(m,m′)sm̂′(γpb, γpb+)cm′p + Smp ,

L(m,m′) =
α

4π

∑
n

Mmn
Jn(γpb)

J ′n(γpb)
M†nm′ ,

Mmn =
2

α

∫α
0
e inθ cos(m̂θ)dθ , (24)

with source term

Smp =
∑
n

Mmn

[
hznp(b) −

Jn(γpb)

γpJ ′n(γpb)
h′znp(b)

]
,

hznp(b) =
π

2
qHpλnγpβc qn(γpb, γpR)

1

2πi(ω− nω0)
.

(25)

Resonances given by zeros of the determinant. Field at the beam
expressed in terms of cmp, amp.40/44



Structure of equations for the side box model - 1

The source involves poles 1/(ω− nω0) for all n. Any
harmonic of the revolution frequency can be excited, but the
driving term is proportional to the overlap Mmn and is
maximum for m̂ = n. This setup leads to a matrix impedance
Z (n, n′, n′ω0) appearing in the wake voltage, with a sum on
n′ against λn′ .

Near a TE pillbox resonance, where J ′n(γpb) = 0, only one
term in the kernel L(m,m′) is important. The system can
then be solved analytically since its matrix is rank 1. Result: a
resonance near the unperturbed pillbox resonance if the cavity
is shallow.
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Structure of equations for the side box model - 2

The diagonal matrix elements of the system have zeros at
frequencies almost equal to those of a sector chamber with
radius b+ = b + d ; that is where J ′m̂(γpb+) = 0 for the TE
case.

If the perturbation from off-diagonal terms is not too large,
we then have a vestige of sector chamber modes in the
spectrum. This might explain Bergstrom’s partial success in
using a local average radius to fit the observed spectrum.
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Summary

Whispering gallery theory provides a plausible fit to VUV
spectra. Further experiments at VUV would be welcome,
since its vacuum chamber is nearly ideal.

At CLS, the extreme stability of spectra to changes in the
machine setup and IR optics suggests that spectra are
determined by the vacuum chamber primarily.

A theory in progress makes it unsurprising that the CLS
spectra are more complicated that those of VUV, owing to
large wall excursions in the IR vacuum chambers. The simple
smooth gallery picture is strongly perturbed but not
completely destroyed.
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Outlook
Workshop at CLS on Nov. 1-2, 2010, to discuss possible
EXPERIMENTS on CSR spectra.

Jack Bergstrom, Tim May, Brant Billinghurst et al., CLS

Steve Kramer, NSLS

Peter Kuske and Martin Ries (for Gode Wüstefeld), BESSY, MLS

Anke-Suzanne Müller, ANKA

James Safranek, Bob Warnock, SLAC

Shane Koscielniak, TRIUMF

John Byrd (virtually?), ALS

Rui Li, JNAL

Jim Ellison (?), UNM

THEORY: Numerical solution of the side box model underway, and
Vlasov solutions with Z of torus. Hope to get to real wall profile
and inclusion of straights.
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