Experimental studies on an emittance exchange beamline at the A0 photoinjector

J. C. T. Thangaraj Fermi National Accelerator Laboratory, Batavia, Illinois

Outline of the talk

Motivation

- I. Emittance exchange beamline
 - Diagnostics
 - Measurements
- II. Coherent synchrotron radiation studies
 - Detection and characterization of radiation
 - Studies on the electron beam
- III. Experimental results of emittance exchange with chirped beam

Next-generation emittance exchangers

Motivation

- X-ray FELs demand ultra-low transverse emittance beam*
- State-of-the art photo-injectors can generate low 6-D emittance. Typically asymmetric emittances.
 Emittance exchange can swap transverse with the longitudinal emittance.
- Allows one to convert transverse modulations to longitudinal modulations: Beam shaping application
- Can also be used to suppress microbunching instability**

Emittance exchange beamline

$$R = \begin{pmatrix} 0 & \frac{Lc}{4} & \frac{-(4L+Lc)}{4\eta} & \eta - \frac{\alpha(4L+Lc)}{4} \\ 0 & 0 & \frac{-1}{\eta} & -\alpha \\ \\ -\alpha & \eta - \frac{\alpha(4L+Lc)}{4} & \frac{\alpha Lc}{4\eta} & \frac{\alpha^2 Lc}{4} \\ \frac{-1}{\eta} & \frac{-(4L+Lc)}{4\eta} & \frac{\alpha Lc}{4\eta^2} & \frac{\alpha Lc}{4\eta} \end{pmatrix}$$

 α : Bending angle η : dispersion of dogleg L: Length of the dogleg Lc: Length of the 5-cell $\kappa = \frac{-1}{\eta}$: Condition for EEX

Fermilab A0 photoinjector: Emittance exchange

Gun	1.3 GHz NC
Accelerating Cavity	1.3 GHz SC
Deflecting cavity	3.9 GHz NC

Charge per bunch	100 pC – 1 nC
Energy	14.3 MeV
Bunch length (rms)	~ 3 ps
Energy spread (rms)	~ 10 KeV
Rep. rate	1 Hz
Typical number of bunches in a train	~ 100

Emittance measurement diagnostics and techniques

- Beam size: OTR and YAG screens
- Bunch length: Streak or Interferometer
- Energy spread: Spectrometer magnet and a screen
- Transverse emittance: Multi-slit method
- <u>Longitudinal emittance</u>: Product of minimum energy spread and bunch length (upper limit)

GUI to extract Courant- Snyder parameters

The A0 photoinjector: Machine tuning

Varying quadrupoles here changes bunchlength here

- 1 RF scan to locate minimum energy spread i.e. no chirp
- 2 Streak camera to measure bunch length (Longitudinal emittance)
- 3 X-Slits and Y-slits to measure the transverse emittances (X3)
- 4 Tune quadrupoles to maximize CTR radiation thus minimizing the bunchlength. Tune quadrupoles to minimize energy spread at XS4. Finer scan along the minimum values.
- 5 X-slits and Y-slits to measure outgoing transverse emittance (X23)

First observation of emittance exchange

PRL **106**, 244801 (2011)

PHYSICAL REVIEW LETTERS

week ending 17 JUNE 2011

First Observation of the Exchange of Transverse and Longitudinal Emittances

J. Ruan, A. S. Johnson, A. H. Lumpkin, R. Thurman-Keup, H. Edwards, R. P. Fliller,* T. W. Koeth,[†] and Y.-E Sun *Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA* (Received 16 February 2011; published 17 June 2011)

An experimental program to demonstrate a novel phase-space manipulation in which the horizontal and

An Observation of a Transverse to Longitudinal Emittance Exchange at the Fermilab A0 Photoinjector

by Timothy W. Koeth

Ph. D. Dissertation

The A0 beamline: Part II

Coherent Synchrotron Radiation

 Synchrotron radiation is the result of individual electrons that randomly emit photons when passing through a bending magnet.

 Coherent synchrotron radiation (CSR) is produced when a group of electrons collectively emit photons in phase. This occurs when bunch length is shorter than radiation wavelength.

Condition for coherent radiation

Form factor

$$P(\lambda) = p(\lambda)N_e[1 + (N_e - 1)f(\lambda)]$$

- $P(\lambda)$ Total power radiated at wavelength λ
- $p(\lambda)$ Synchrotron radiation from one electron

 $N_{\mathcal{L}}$ Number of electrons in the bunch

$$f(\lambda) = 1 \text{ for } \lambda >> \sigma_l$$

Long wavelength cutoff due to vacuum chamber

$$\lambda_{cutoff} = 2h\sqrt{\frac{h}{\rho}}$$

- h Height of the chamber 1.8 inches
- ρ Bending radius 900 mm

$$\lambda_{cutoff}$$
 20mm

CSR effect on the bunch is....

$$\Delta E = 0.35mc^2 \frac{N_e r_e L_B}{(\rho \sigma_z^2)^{2/3}}$$

- r_e Classical electron radius
- $L_{\scriptscriptstyle R}$ Length of the bend
- N_e Number of *electrons* in the bunch

The A0 beamline

CSR: Measurements

Power

Polarization

Angular Distribution

Using CSR as a bunchlength monitor

CSR Power Vs RF Phase (bunchlength)

Polarizer angle vs CSR

CSR Angular distribution

Bunch length measurement: Experimental Setup

Martin – Puplett interferometer

Bunch length measurement: Simulation Vs Experiment

Studying the effects of CSR on the beam*

^{*} Using a Skew Quad in a Chicane to Temporally Resolve the Transverse Effects of CSR – P. Emma (uBI 2010) 21

Twin pulse at the cathode

Twin pulse Profile @X24 vs SkewQuad

Twin pulse Profile @X24 vs SkewQuad

Skew quad diagnostic to resolve CSR effects

Skew quad measurements at X24

Part III: Chirped beam has improved performance

Emittance-exchanger

- Improved performance
- Minimizes thick lens effect

How to minimize thick lens effect?*

$$\varepsilon_{x,\text{out}}^2 = \varepsilon_z^2 + \left(\frac{17\lambda^2}{40D}\right)^2 \langle x^2 \rangle [\langle z^2 \rangle + \alpha^2 D^2 \langle \delta^2 \rangle + 2\alpha D \langle z \delta \rangle]$$

$$\varepsilon_{z,\text{out}}^2 = \varepsilon_x^2 + \left(\frac{17\lambda^2}{40D}\right)^2 \langle x'^2 \rangle [\langle z^2 \rangle + \alpha^2 D^2 \langle \delta^2 \rangle + 2\alpha D \langle z \delta \rangle]$$

 λ : wavelength of cavity

x':transverse angle

z:longitudinal position

 δ : fractional energy spread

D: dispersion of a dogleg

 α : bending angle

Minimize this term:

$$[\langle z^2 \rangle + \alpha^2 D^2 \langle \delta^2 \rangle + 2\alpha D \langle z\delta \rangle]$$

Introduce correlation : $\delta = hz$

then:

$$< z^{2} > +\alpha^{2}D^{2}h^{2} < z^{2} > +2\alpha hD < z^{2} >$$

$$=> h = \frac{-1}{\alpha D}$$
 will make this term zero.

In other words, set Chirp to -1/R₅₆

^{*} P. Emma, Z. Huang, K. - J. Kim, P. Piot, "Transverse-to-longitudinal emittance exchange to improve performance of high-gain free-electron lasers", Phys. Rev. ST Accel. Beams 9, 100702 (2006),

Minimize thick lens effect: Add energy chirp

Chirp	RF-phase
0	-30
2.0	-35
4.5	-40
7.7	-45

Look for bunch length, transverse beam size, emittances (x and z)

Pick 9-cell phase to introduce chirp

$$chirp = \frac{d\delta}{dz} = \frac{(2\pi/\lambda)eV_0\sin\phi}{E_0 + eV_0\cos\phi}$$

Chirped beam study: Streak camera

Finer quadrupole scan using interferometer pyros

Interferometer measurement

CSR Power (pyrometer) Vs RF Phase (bunchlength)

Emittance exchange with chirped beam*

Emittance exchange simulation with GPT

Next generation EEX: upgraded Classic EEX*

$$\begin{pmatrix} 0 & 0 & -\frac{L+Lc}{\eta} & \eta - \frac{\xi(L+Lc)}{\eta} \\ 0 & 0 & -\frac{1}{\eta} & -\frac{\xi}{\eta} \\ -\frac{\xi}{\eta} & \eta - \frac{\xi L}{\eta} & 0 & 0 \\ -\frac{1}{\eta} & -\frac{L}{\eta} & 0 & 0 \end{pmatrix}$$

Use two (or one) more deflecting cavity to compensate thick lens effect

Next generation EEX : A Negative drift EEX

USING AN EMITTANCE EXCHANGER AS A BUNCH ...

Phys. Rev. ST Accel. Beams 14, 084403 (2011)

FIG. 13. Transverse-to-longitudinal emittance exchange optic with optics for negative drift lengths between the doglegs.

Next generation EEX : A Chicane style EEX

FIG. 2. A chicane-type exact EEX beam line. Two quadrupoles (green diamonds) are put upstream of the transverse cavity to reverse the dispersion.

Next generation EEX : A Double EEX*

A schematic of a proposed bunch compressor

Manipulate the longitudinal phase space with ease of manipulation of the transverse phase space

A brief history of EEX (just a sample)

- Chicane style EEX: Cornacchia and Emma (2002)
- Double dogleg EEX: Kim and Sessler (2005)
- A0 emittance exchange beamline commissioned
- Beam shaping results: Yin-e et. al (2010)
- Emittance exchange result: Jinhao et. al (2010)
- EEX for tailoring current distributions: Piot (2011)
- EEX for HHG: B. Jiang (2011)
- Double EEX proposal : Zholents & Zolotorev (2011)
- Use of EEX as a bunch compressor : Carlsten (2011)
- Chicane style EEX: Xiang and Chao (2012)
- Terra incognita

Summary

- Coherent synchrotron radiation has been studied at the emittance exchange beamline.
- Emittance exchange with an energy-chirped beam shows improved performance. Emittance dilution still exists.
- Next generation EEX has to take into account the thick lens cavity with modification to exchange lattice.
- A chicane-style emittance exchange looks promising and is planned to be tested at the Advanced Superconducting Test Accelerator (ASTA) facility @ 40 MeV

