The Accelerator-Science Test Accelerator (ASTA) facility at Fermilab: plans and opportunities

Philippe Piot Fermilab & Northern Illinois University CBP seminar, October 25, 2011, LBNL

The Advanced Science & Technology Accelerator (ASTA) facility at Fermilab: plans and opportunities

Philippe Piot Fermilab & Northern Illinois University

CBP seminar,

October 25, 2011, LBNL

The Advanced Superconducting Test Accelerator (ASTA) facility at Fermilab: plans and opportunities

Philippe Piot Fermilab & Northern Illinois University

CBP seminar,

October 25, 2011, LBNL

Outline

- Introduction,
- Accelerator science at the A0 photoinjector (A0PI): recent achievements,

- Advanced Science & Technology Accelerator (ASTA)
- High-brightness electron source Laboratory (HBSEL)
- Conclusion.

Introduction AARD at Fermilab

Technology:

- Designed, built, delivered an injector for the TESLA test facility (TTF-1) at DESY,
- Laser capable of providing ILC-type macropulse.

Scientific Achievements:

- Characterization of a L-band gun over a wide range of operating parameter (1999), [Carneiro et al. PRSTAB 2005].
- Channeling radiation at high charge (1999-2003) [Carrigan, PRA 2003],
- Observation of wakefield via electro-optical imaging (2000). [Fitch, PRL 2001].
- Generation of angular-momentum dominated beams (2002-2003), [Sun, PRSTAB 2004].
- Flat beam production in a photoinjector (2000-2005), [D. A. Edwards, LINAC2000; Piot, PRSTAB 2006].
- Plasma-wakefield acceleration and plasma lens in under-dense regime, (2003-2004), [Thompson, J. Plas. Phys. (2010)].
- Emittance exchange between the horizontal and longitudinal degrees of freedom (2008-2010), [Koeth, PAC09; Ruan, PRL 2011].
- Pulse shaping with emittance-exchanger beamline (2010-2011), [Sun, PRL 2010; Piot, PRSTAB 2011].

A0 photoinjector (A0PI): introduction

- Electron accelerator based on 1.3 GHz rf-gun with Cs₂Te photocathode → Q< 10 nC
- TESLA SCRF cavity → E=16 MeV
- Emittance exchange beamline $(\varepsilon_x, \varepsilon_z) \rightarrow (\varepsilon_z, \varepsilon_x)$
- Round-to-flat-beam transformer $\rightarrow \epsilon_x/\epsilon_v \sim 100$
- Extensive diagnostics
- Two photocathode lasers (Nd:YLF + Ti:Sp)

Phase space manipulations at the A0PI

 Observed emittance exchange between the horizontal and the longitudinal phase spaces

Bunch duration measurement with streak camera

Current-profile shaping at the A0PI

shaped beam

 Generated a train of microbunches with sub-ps separation using slits

Longitudinallyshaped beam

Applications:

δ (%)

generation of narrow-band coherent radiation (next slide),

0

δ (%)

Resonant excitation of wakefields + transformer ratio enhancement in PWFA and DWFA. [Y.-E. Sun et al., PRL 105, 234801 (2010)

P. Piot et al., PRSTAB 14, 022801 (2011)] Fermilab

X3

X5

(w X3 slits)

XS3

(w X3 slits)

Current-profile shaping at the A0PI (2)

 Demonstrated production of a double-bunch beam starting from a transverse modulation of cathode laser

[T. Maxwell et al., (2011)]

Narrow-band Terahertz radiation

 Important application of sub-ps bunch train generation: production of tunable narrow band THz radiation,

At A0 demonstrated the generation of narrow-band THz transition radiation

[P. Piot et al., APL 98, 261501 (2011)]

Ellipsoidal bunch from Cs₂Te photocathode

Generation of uniformly-filled 3D ellipsoidal bunch from Cs₂Te photocathode:

Preliminary experiment completed.

[P. Piot et al., FEL11 (2011)]

登Fermilab

A0 photoinjector decommissioned 09/31/2011...

- Operated from 1999 to 2011
- Next steps:
 - High-Brightness Electron
 Source Laboratory (HBESL)
 - . RF gun,
 - Concentrate on new cathodes (especially field emitters)
 - The Advanced Science & Technology Accelerator (ASTA):
 - Eventually 900-MeV beams,
 - User-driven facility

Advanced Science & Technology Accelerator

This cavity is currently at A0

<40 MeV < 750 MeV < 1 GeV

ASTA promise...

(extrapolated performances from the injector simulations)

- Variable energy from ~40 to ~1 GeV,
- High-repetition rate (1-ms trains):
 - Exploration of dynamical effects in beam-driven acceleration methods.
- L-band SCRF linac:
 - Well suited for beam-driven acceleration,
- Photoinjector source:
 - Provides low-emittance beam,
- Arbitrary emittance partition:
 - repartition of phase spaces to match final applications,
 - Tailored current profiles.

Photoinjector design

- Uses FLASH-type L-band rf gun (~40 MV/m),
- Nominal laser is 3-ps possibility to have flat-top distribution (stacking with α -BBO crystals),
- Variable transverse emittance ratio (magnetized beam + round-to-flat flat beam RFTB transform)
- 40-MeV off-axis user area

Photoinjector performances (simulations)

 Beam quality comparable to FLASH (uncompressed beam),

Transverse emittance

Longitudinal emittance & bunch length

[P. Piot, et al., IPAC10 (2010)]

Slice parameters

Photoinjector configuration for 1st beam

No 3rd harmonic cavity ⇒ nonlinear compression,

Satisfies the ILC requirements: ~1.2 kA peak current (corresponds to a 3.2-nC 300-μm Gaussian bunch in Q= 3.2 1.0 0.2 0.02 nC

a cryomodule).

	Q	ϵ_{nxi}	ϵ_{nxf}	ϵ_{nyi}	ϵ_{nyf}	σ_{zi}	σ_{zf}
	(nC)	(μm)	(μ m)	(μ m)	(μm)	(mm)	(mm)
	3.2	4.62	13.40	4.61	8.099	2.60	0.53
	1.0	2.33	3.393	2.32	2.472	1.97	0.33
	0.25	0.598	1.25	0.598	1.392	1.95	0.38
	0.02	0.279	0.459	0.279	.366	1.27	0.15
-							

Transverse emittance before and after BC1 as function of charge

(simulations with IMPACT-Z)

[C. Prokop, et al., (2011)]

Longitudinal phase space upstream (top) and downstream (bottom) of BC1

Accelerator configuration for 1st beam

- Only one accelerating module available for first beam,
- Transport from cryomodule exit to spectrometer line with FODO
- High-energy spectrometer + user beamline(s)

[C. Prokop, et al., (2011)]

Accelerator configuration for 1st beam

High-energy user area + spectrometer

Initial research themes (a biased view)

- Beam dynamics
 - Photoinjector characterization,
 - Low energy compression.
- Advanced phase space manipulations:
 - Flat beams and their compression,
 - Transverse-to-longitudinal phase space exchange (PEX),
 - Arbitrary repartitioning of emittances (flat beam + PEX)
- High-brightness electron beams
 - Channeling radiation (with Vanderbilt),
- Integrable-Optics Test Accelerator
 - Small diameter ring downtream of cryomodule to test integrable optics concept.

To be done after 1 accelerating module

Next generations phase-space exchange (PEX) experiment at ASTA

- Two stages:
 - Phase I: improve configuration in 40-MeV beamlline
 - Phase II: installation downstream of cryomodules ⇒ usable for other applications (current shapers, microbuncher, etc...)
- Condition for phase space exchange

Dispersion vector Transfer matrix of downstream beamline downstream beamline

downstream beamline

$$\overrightarrow{\eta}_d = \left(egin{array}{cc} R_{11,d} & R_{12,d} \\ R_{21,d} & R_{22,d} \end{array} \right) \overrightarrow{\eta}_u$$

Dispersion vector upstream beamline

$$\overrightarrow{\eta} \equiv (\eta, \eta' \equiv d\eta/ds)$$

upstream beamline
$$\text{deflecting cavity } \kappa = \frac{1}{\eta_u}$$

[R. Fliller, FNAL Beamdocs (2007)]

2nd-generation PEX experiments at ~40 MeV (1)

- Limitations of A0PI experiments:
 - No longitudinal phase space diagnostics downstream of PEX,
 - Imperfect exchange due to thicklens deflecting mode cavity (still trying to understand this),
 - Limited in charge (15 MeV)
- PEX experiment will be resumed using an improved setup
 - . Chicane-like PEX configuration,
 - Deflecting cavity downstream of PEX
 - Done in the 40-MeV user area (precludes injection in accelerating modules)

[Y.-E Sun, et al., (2011)]

2nd-generation PEX experiments at ~40 MeV (2)

Goals:

- Arbitrary repartition of beam emittance within the 3 degrees of freedom (combined with round-to-flat beam transformer)
- Generation of fs microbunches from patterned cathodes/lasers
- Improved deflecting cavity following Zholents-Zolotorev's suggestion (add TM₁₁₀ mode to cancel thick-lens effect)

2nd-generation PEX experiments at ~40 MeV (3)

- TM₀₁₀+TM₁₁₀ cavity (idea from Zholents and Zolotorev)
- At 40 MeV, we can still do this with a LN-cooled cavity

PEX at higher energies

 Requirement on deflecting cavity kick can be alleviated with a higher dispersion

$$\kappa = 1/\eta_x$$

But beam size should satisfy

$$\sigma_x \le \lambda/(12\pi)$$

 At 3.9 GHz, we will have to go with a SCRF system (advantage to also do full exchange over a bunch train)

High-Brightness e- beams: possible production of field-emitted bunches

- During FY12-13, HBESL will support the development of a coaxial-line cathode holder
- Two-frequency gating of field emitters
- If successful this system will be and used at ASTA

[collaboration with Vanderbilt and NIU (funded by DARPA)]

IJ. Lewellen, PRSTAB 2006

High-Brightness e- beam: applications to X-ray sources

- Bright electron beams from single-tip FE are planned to be used to produce X-rays via channeling radiation
- Expected brightness for 15 keV
 ~10¹² photons/s-mm²-mrad²-0.1% BW
- Need 40 nm e- beam on the diamond crystal with ~1000 e-

[C. Brau et al, to appear in Sync. Rad. News (2012)]

 FE array cathodes could also be used to increase charge/bunch or open new manipulation opportunities (combination with PEX)

Integrable-Optics Test Accelerator (1)

- ASTA facility provides the needed infrastructure to test other concepts,
- IOTA, a compact ring dedicated to test integrable optics, will use a 150-MeV beam from STF@NML,
- No stringent requirements on beam quality.

Integrable-Optics Test Accelerator (2)

e- Energy	150 MeV
Circumference	32 m
Dipole field	0.5 T
Betatron tunes	Qx=Qy=3.2 (2.4 to 3.6)
Radiation damping time	1-2 s (10 ⁷ turns)
Equilibrium emittance, rms, non-norm	0.06 μm

- Nonlinear integrable accelerator optics are being developed to enable stable operation of a completely nonlinear machine (tune spread up to 50%)
- Accelerators with very large tune spread will push the intensity limits of storage rings by suppressing collective instabilities through "better" Landau damping.

Further developments

- Two additional accelerating module will be installed
- At high-energy it is hope to have a PEX beamline or a magnetic chicane,

Energy is currently limited to 900 MeV (safety envelope)

Other experiments currently being explored at ASTA

- Dielectric wakefield acceleration in slab structures with ramped current profile and flat beams
- Short-wavelength "seeded" FELs with emphasis on possible application of PEX techniques?
- Longitudinal space charge amplifier [idea from Schneimiller + Yurkov (DESY)]
- Positron beam production for ILC keep-alive e+ source,
- Narrowband gamma ray (muons Inc.)
- Many other possible applications discussed at a workshop in 2009.

http://apc.fnal.gov/ARDWS/index.html

Summary

- Over the last decade, Fermilab has been an active player in photoinjector R&D and applications to AARD:
 - e- source for linear collider + short-wavelength FELs,
 - novel phase space manipulations: flat beam, emittance exchange, current tailoring technique.
- Phase space manipulations pioneered at A0PI have many applications: beam-driven acceleration, light sources, ...
- Formation of the Illinois Accelerator Research Center (IARC)
 - ASTA: will incorporate most of these manipulations ⇒ flexible, powerful facility to foster an user-driven AARD program.
 - A0PI: will be transformed into a high-brightness electron source laboratory (HBSEL):
 - explore novel cathodes and acceleration concepts,
 - support gun R&D to improve the performances of ASTA.

