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COLLIDING BEAMS: PRESENT STATUS; AND THE SLAC PROJECT* //

2 B. Richter

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

Report at HEAC 1971

The discovery in the early '60's at the Princeton-
Stanford ring of what was thought to be the resistive wall
instability brought the realization that circular accelerators
are fundamentally unstable devices because of the interac-
tion of the beam with its environment., Stability is achieved

only through Landau damping and/or some external damping
systoem.

1965, Priceton-Stanford CBX: First mention of an 8-pole magnet
e Observed vertical resistive wall instability

eLecTRoN -y e With octupoles, increased beam current from ~5 to 500 mA
CBX layout (1962) BE::LSED ‘E] CERN PS: In 1959 had 10 octupoles; not used until 1968
-p:r,&”;fsﬁf’mnl ”‘“ view e h M e At 10'? protons/pulse observed (1% time) head-tail instability.

\ - } iﬂ Octupoles helped.
\ AYY e Once understood, chromaticity jump at transition
71 was developed using sextupoles.
- 9 ~ J * More instabilities were discovered; helped by octupoles
X e and by feedback. 2




_Hewto make a high-intensity machine?

(OR, how to make a high-intensity beam stable?)

Landau damping - the beam’s “immune system”. It is
related to the spread of betatron oscillation
frequencies. The larger the spread, the more stable
the beam is against collective instabilities.

External damping (feed-back) system - presently the
most commonly used mechanism to keep the beam
stable.

Can not be used for some instabilities (head-tail)
Noise
Difficult in linacs



- Most accelerators rely on both

o LHC

e Has a transverse feedback system
e Has 336 Landau Damping Octupoles
* Provide tune spread of 0.001 at 1-sigma at injection

e In all machines there is a trade-off between
Landau damping and dynamic aperture.
. ...But it does not have to be.



~Today’s talk will be about.../

... How to improve beam’s immune system (Landau damping
through betatron frequency spread)

 Tune spread not ~0.001 but 10-50%

What can be wrong with the immune
system?

e The main feature of all present accelerators — particles have
nearly identical betatron frequencies (tunes) by design. This
results in two problems:

1. Single particle motion can be unstable due to resonant
perturbations (magnet imperfections and non-linear elements);

1. Landau damping of instabilities is suppressed because the
frequency spread is small.



"~ Courant-Snyder Invariant

Equation of motion for 2'+K(s)z =0,
betatron oscillations Z=XO0ry

Courant and Snyder found a conserved quantity:

1 g
J_Z,B(s)[z +( - Z ,B(s)zj]

- (\/ﬁ)’ KO % -- auxiliary equation

HU o d,) =@, + @,
Jx,Jy --are Courant-Snyder integrals of motion

oH oH :
— @, =—— -- betatron frequencies

=




PF—tinear
| good or bad?

H,,Jdy)=0,d+to,Jd,

e [t is convenient (to have linear optics), easy to model, ...but it is
NOT good for stability.

e We did not know (until now) how to make it any other way!

* To create the tune spread, we add non-linear elements (octupoles)
as best we can oa

e Destroys integrability! % -
octupole RN BN Ny

Tune spread depends on -
e a linear tune location - n

1-D system: :&ﬁ%
Theoretical max.

spread is 0.125 A
2-D system:
Max. spread < 0.05

e
>

3 4 5 6 7 8



~ First non-linear accelerator proposals
(before KAM theory)

In a series of reports 1962-65 Yuri Orlov has proposed
to use non-linear focusing as an alternative to strong
(linear) focusing.

e Final report (1965):

FUNDAMENTAL PROPERTIES OF
NON-LINEAR FOCUSING*

V. V. VecHesLavov and Yu. F. OrLov

(Received 23 July 1965)

Abstract—An analysis has been made of the fundamental properties of non-linear focusing taking the
simple example of non-linear focusing in a symmetric magnetic field of the fifth degree. The dimen-
sions of the first stability region with regard to small non-linear z-oscillations are determined. The
influence of r-z-resonantes was studied and also the maintenance of stability when allowing for
adiabatic damping with the help of external or mutual r- and z-phase stabilization. It was found that
mutual phase stabilization arises in the region of 4 r-z-resonance.

A numerical and partly analytical study of these effects has bean made.



/ . .
McMillan nonlinear optics

* In 1967 E. McMillan published a paper

SOME THOUGHTS ON STABILITY
IN NONLINEAR PERIODIC FOCUSING SYSTEMS

Edwin M. McMillan

September 5, 1967

* Final report in 1971. This is what later became known
as the “McMillan mapping
x P Bx’ + Dx

f(xX)=-— 5
pi:_xi—1+f(xi) AX®+Bx+C

AX®p® + B(x2 P+ xp2)+ C(x2 T p2)+ Dxp = const

If A =B = 0 one obtains the Courant-Snyder invariant



Bx° + Dx
Ax? +Bx+C

~ MeMillan

o At small x: f(x)—>—gx

f(x)=—

0

1

: ; 1 D
Linear matrix: | -1 2 Bare tune: —acoS| — —
C 27 2C

* Atlargex: f(x)—>0 Al B-0C-1 D=7

8 R ¢ 7/

Linear matrix: | _; 4] Tune:0.25: NN
i i gt g e
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® Thus, a tune spread of 50-100% is AN\

possible! N\




T posassee

g
What about 2D optics?

How to extend McMillan mapping into 2-D?
Danilov, Perevedentsev found two 2-D examples:

* Round beam: xp, - yp, = const

1. Radial McMillan kick: r/(1 + r?) -- Can be realized with
an “Electron lens” or in beam-beam head-on collisions

>. Radial McMillan kick: r/(1 - r?) -- Can be realized with
solenoids (may be useful for linacs)

In general, the problem is that the Laplace equation
couples x and y fields of the non-linear thin lens

11



1 octupole in a linear 2-D lattice

Typical phase space portrait:
N | | | / 1. Regular orbits at small amplitudes

2. Resonant islands + chaos at larger
/ amplitudes;

Are there “magic” nonlinearities that
create large spread and zero resonance
strength?

[ ] o

The answer is — yes
- - - (we call them “integrable”)

=il =0 s = oas 1]

12



Long-term stability

e The first paper on the subject was written by Nikolay Nekhoroshev in 1971

Russian Math. Surveys 32:6 (1977), 1-63 1.1 Nearly-integrable Hamiltonian systems, Perpetual stability and stability
From Uspekhi Mat. Nauk 32:6 (1977), 5-66 during finite intervals of time. In this article we investigate the behaviour of
the variables [/ in the Hamiltonian system of canonical equations
f—l o H
="' 977
AN EXPONENTIAL ESTIMATE OF THE with the Hamiltonian
HAMILTONIAN SYSTEMS where e« 1 is a small parameter, the perturbation eff; (I, @) is
N. N. Nekhoroshev ?tp;lrmdic n} ¥ =9, ..., ¢, and [ is an s-dimensional vector,
L | F
e He proved that for sufficiently small ¢ [1(t) = 1(0)| < R.e” for |t] < T.exp(e™)

provided that H_(I) meets certain conditions know as steepness
e Convex and quasi-convex functions H (1) are the steepest
* An example of a NON-STEEP function is a linear function

Ho(l1 1) =vily +v,l,
* Another example of a NON-STEEP function is
Ho(ly, 15) = |12 % |22

13
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“Non-linear Hamiltonians

We were looking for (and found) non-linear 2-D steep
Hamiltonians that can be implemented in an accelerator

Other authors worked on this subject recently: J. Cary, W.
Wan et al., S. Danilov, E. Perevedentsev

e The problem in 2-D is that the fields of non-linear elements are
coupled by the Laplace equation.

e An example of a steep (convex) Hamiltonian is

2 2
HO(Il’ |2)=0£1|1 +0£2|2, a>0

but we DO NOT know how to implement it with magnetic

fields...

14



What are we looking for?

We are looking for a 2-D integrable convex non-linear
Hamiltonian, H,(l;,1,)=h(l,1,)

e Nh(l;,1,)=const -- convex curves

§




~—Our approach

See: Phys. Rev. ST Accel. Beams 13, 084002

Start with a round axially-symmetric LINEAR focusing

lattice (FOFO)

Add special non-linear potential V(x,y,s) such that

AV(xys) AV(x y) = O

Sun Apr 25 20:48:31 2010 OptiM - MAIN: - C:\Documents ergei\My Documents\

[m]
T T

BETA_X&Y]
T

Vixys) Vixys)

V(x,y,s)

V(x,y,s)

V(x,y,s)1

1
[m]

|
DISP_X&Y]

1 1 1
BETA_X DISP_X DISP_Y



/. ° - = °
Special time-dependent potential

[et’s consider a Hamiltonian

p- 0 X~
i + + K{(s + +V(X,V,S

where V(x,y,s) satisfies the Laplace equation in 2d:

AV (X,Y,5) = AV (X,y)=0

yA

Zy =

In normalized variables we will have: JA(s) |
b = pyBGs) - L8
T e
- \/ﬂ(w), VB, ()

Where new “time” variableis  /(s) = _[

2 B(S)



p Y —
Four main ideas
Chose the potential to be time-independent in new
variables P +Pu X +Yq

N = 5 +U Xy, Yy)
T B(s) .
. T'insert
Element of periodicity oo
o A ey Buaall
B(s) = L —sk(L 3)2 = =
\/1_(1_“() 0 -k 1 |
2 =
< S

Find potentials U(x, y) with the second integral of
motion

Convert Hamiltonian to action variables Hg(1;,1,)=h(1;,1,)

and check it for steepness 8
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ﬁgrable 2-D Hamiltonians

Look for second integrals quadratic in momentum

e All such potentials are separable in some variables
(cartesian, polar, elliptic, parabolic)

e First comprehensive study by Gaston Darboux (1901)

So, we are lOOkIH% for 1ntegrable potentials such that

2 pxgpy =

Second integral: S Apf + Bp, Py +Cp§ +D(X,Y)

A=ay’ +c’,
B =-2axy,
C=ax",

19
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Darboux equation (1901)

® Leta=0and c #0, then we will takea =1 e | LU
xy(UXX —Uyy)+(y2 G +02)ny +3yU, —3xU, =0

® General solution

U(xy)= ffz)sz(n)

\/(x+c)2 it +\/(x——c)2 e

2C

Jix+cf +y* —y(x—cf +y?

2C

£ =

77:

¢ [1,o],n:[-1, 1], fand g arbitrary functions



The second integral

The 2 integral

(6,3, By Py )= 0, = yp, f +c2p2 + 202 LT +OGE

E2—n?

Example: U((x,y)= %(X2 ¥ yz)

f,(8) ==& -1) gl(n):%nz(l—nz)

1%,y p,. b, )=(xp, —yp, J +c?p? +c?x?



p e e e

e

Laplace equation

Now we look for potentials that also satisty the Laplace
equation (in addition to the Darboux equation):

U,+U,, =0

We found a family with 4 free parameters (b, ¢, d, t):

f,(&) = &J&? —1(d +tacosh(¢))
g, (1) = 71-n° (b +tacos(n))

f(e)+9m)

U(xy) = e

The most interesting: d=0 and b= _%t



/LH%e mtegW

= + py X+’ +tU (X, ) This potential has two adjustable parameters:

2 2 t — strength and c — location of singularities

Multipole expansion (electrostatic case):

For |z| <c¢ U(x, y)zCLZRe((x+iy)2+?£i2(x+iy)4+ iy)® + iy)8+...j
Forc=1
[t] < 0.5 to provide linear stability for small

amplitudes
For t > 0 adds focusing in x

Small-amplitude tune s:

— vl 2

v, =+/1-2t

23



~—® Magnetostatic case

-5 0 0.5

iy)8+...j

24

t g Sy 8 n
F U (X, z—lm( X+1Y) +——=(X+1y) +——(X+1y) +
orlzl<c U(xy) 7 M () o () g (et )
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~— Convex Hamiltonian

This Hamiltonian is convex (steep)
Example of tunes for t = 0.4

v1(J1, 0) v,(0, J,)
08 //—'_"//’_
//
-
. i o 1-2t

o e e e e e e =

02
0.2 04 06 08 1 00 02 04 06 08
Jlj JZJ-

For t -> 0.5 tune spreads of ~ 100% is possible
25
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/ ™ ™
~ How to realize it?

T B(s) _
T'insert

Need to create an element o OJ
0O O

of periodicity.

1
Qo)
0 -k 1

e The T-insert can also be

o A SRR 0 6
[y
S S L )
0 e el

which results in a phase advance 0.5 (180 degrees) for the
T-insert.

e The drift space L can give the phase advance of at most
0.5 (180 degrees).

26



How to make the Hamiltonian—

— time-independent?

Hy = 2P I a4V (0B, Y B 50)
Example: quadrupoles V(X,Y,s)= r (2)2 (x2 = y2)
U(XN’yN) :q(xli _ylil)

2 2 2 2
P + P Xy +
SRR +Q(Xri_

H
5 2 2

Integrable but still linear...
quadrupole
- AMplTce Tunes:  Vy =V (1+20)
: vi =vi(l2q)
B(s)
Tune spread: zero

0.5

=

—~

~
[N

| I
—~
w
~

06 08
L

04



F—Tr = - -
New cryoplant and I Y ,' J |
horizontal cryomodule \4 e - . e o
test stands . :H :H EEies )| = - —:lr—mh . ‘ j‘;‘f:- o ,
| | o % - E-z [y u] I b | ‘
i " 1
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torage ring
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75 meters
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A

e- Energy 150

] —

- Circumference 38 m
Dipole field 0.5T
Betatron tunes Qx=Qy=3.2

(2.4 t03.6)

Radiation damping time | 1-2s

onlinear
(107 turns)

Lens Block
Equilibrium emittance, 0.06 um

rms, non-norm

Nonlinear lens block

Length 2.5 m
Number of 20
elements

Element length o0.1m

Max. gradient 1 T/m

Pole-to-pole ~ 2 cm
distance (min)




~—Non-linear elements section

* Number of elements per section: 20 - 30
* Section length: 2 -3 m
i A wingmnrae i Quadrupole component strength (T/m)

03

1 0.25

0.2

2 B
> 5
3 g
d [t] o015 |
b 0 0.15
3 - 0.1

0.05 A

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

30



How to make these elements?

Proposal 1: custom-built magnet

Proposal 2: multipole expansion

P T -
/- . & \ .'\‘
‘;‘ ,/' G TN ¥ \ '\.
f / N \
‘J I‘- \ 5 \ A n‘ 'II 1
/ “ \ \ \‘ \ \
[ { | |
| | f
. | ! | ‘ l 3 .
li , l | .| 17N Hn I /] /] ,
\ Vo 'f',;---\ .‘1 1] | / ‘,x
v\ \ d I/ ,‘ 3 / /
\ Y L /'
\ /
\\ Ve &
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ase space wi
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aj4

e

Agn

Multipole expansion is valid.

C circle

5c trajectories remain inside r

Ay<0.

At AX,

32
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ase space wi ,

10

- - [ el . = Ly =L e .
R Nt R e T - g A
5 . R Lt bt b e e L . -,
- o
; TR -~ "o

20 _'

Motion is stable. Can not use multipole expansion of the potential.
33
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y=0 is unstable point. Still, it is possible to contain trajectories with x<c but y>c
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Conservative variant: round pipe, multipole n=9

..... . . . | 'w”‘““lwli

0.5 0.6

0,01 0 .0F
0,045
0,04
0,005 F
0,035
0,03
:i 0 0.025
0,02
0,015
-0,005
0,01
0,005
-0,01 . . . 0
-0.01 =0, 005 0 0,000 0,01
% L)
Cc=10 mm
pipe radius = 7 mm
beam within r=5 mm

Dipole moment spectrum

tracking one cell Q,=0.8 6Q,,.,=0.3
0Qy=0.15, 8Qx=0.06

with 4 cells -> 6Qy=0.45, 6Qx=0.24

0Qax IS determined by phase advance in drift. Maximum is 0.5 35



~ How much tunes :

y (m)

0,04

0,03 F

002 F

001k

-0.01 F

-0,02 F

-0,03 F

-0,04

0,01 =0,005 0 0,005
% m)

C=10 mm
pipe size x=5 y=35 mm
beam within x=2 mm

0,01

0.5 0.6 0.7 0.8 0.9

Dipole moment spectrum
tracking one cell Q,=0.8 6Q,,.,=0.3

0Qy=0.25, 6Qx=0.12
with 4 cells -> 6Qy=1, 6Qx=0.48

36



~ How much tune s

0,04 0,045 -
]
0,03 F ou0d b s
0.0z b 0035 F- -
1S S A
0,01 |
~ 0,005 b
2 0k
7 o 2 o I 1 I
0,01 F
oons k- b d N
0,02 F
ool b -
0,03 F
-0,04 . . .
-0,01 -0,005 0 0,005 0,01
% (m)
C=10 mm Dipole moment spectrum
pipe size Xx=5 y=35 mm tracking one cell Q_,=0.8 6Q,,..=0.5
beam within x=2.5 mm 0Qy=0.5, 6Qx=0.2
with 4 cells -> 6Qy=2, 6Qx=0.8

37



~ Effects of imperfe

0.01 T T T 0,01

0,005 0,005

y [m)
=
y (m)
o

-0,008 -0,008 F

-0.01 L L L -0.01 L -
-0,01 =0,005 [l 0,005 0,01 -0.0L -0.005 0 0,005 0.01

C=108R Stability is preserved with

p1p€ rad.1us: =/ *Transverse misalignments r.m.s. up to 0.5 mm
beam within r=5 mm *Synchrotron oscillations 6z=0.001, C=-15
6Qy=0.4, 6Qx=0.2 *Bx/PBy difference up to 10%

*UX#UYy#0.5 up to 0.01
*Sextupoles in the arcs DAx=c




“Current and-Proposed Studies™

Numerical Simulations

Nonlinear lenses implemented in a
multi-particle tracking code (MAD-
X and PTC)

Studied particle stability

o Effects of imperfections (phase
advance, beta-functions, etc.) -
acceptable

e Synchrotron motion - acceptable

e Number of nonlinear lenses - 20
Simulated observable tune spread
To Do:

e Ring nonlinearities

e Chromaticity

Spectrum of horizontal dipole moment
Q,=0.9X4=3.6

5000 particles

8000 revolutions

But up to 10 revolutions simulated

Possible Experiments at Test Ring

Demonstrate large betatron tune
spread

Demonstrate part of the beam
crossing integer resonance

Map phase space with pencil beam
by varying an injection error

Fourier Amplitnde

All particles [T a=g
arestable! || 4=0] ‘
A=04
|
P M\
0.5 0.6 0.7 0.8 0.9

Tune
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Fermilab interests

Academic:

® 110 resonances

e long-term stability at large amplitudes

e large tune spreads — Landau damping

Practical:

e Electron machines

- large mic apertures

* Proton machines

- super-high currents

—~ Relevant to DOE/HEP

» instability damping

40
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~—€onclusions

We found first examples of completely integrable non-
linear optics.

e Tune spreads of 50% are possible. In our test ring
simulation we achieved tune spread of about 1.5 (out of

3.6);
Nonlinear “integrable” accelerator optics has
advanced to possible practical implementations
e Provides “infinite” Landau damping

e Potential to make an order of magnitude jump in beam
brightness and intensity

Fermilab is in a good position to use of all these
developments for next accelerator projects

e Rings or linacs

41
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Extra slides



~ Example of time-independent

Hamiltonians

* Octupole . e B ey
S e 2
Uod X Y B
4 4 2

1 1 k
H :E(pf+ p§)+§(x2+y2)+z(x4+y4—6x2y2)

This Hamiltonian is NOT integrable

Tune spread (in both xand y) is
limited to ~12%

44



Example of integrable
““nonlinear Hamiltonian

2 2 2 2
i pr o pyN XN o+ yN

Hy == DI B b B@, Y VBW) 50)

2oy 2b
Vxy)~UGy) = 2 " - 3:)2 =

* This gives EXACT integrability

2 _ 2 )4 2p
IZ(Xpy_ypx)2+2a(X X2y+)yJ; >

- * Not all trajectories encircle
the singularity!

AN
A\idd
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| Spectrum of 005x4=3.62

Fourier Amplitde

E

0.5

0.7

Tt = e ——

Tune

0.8

A=0
A=0.1
A=02
A=04

- -‘- N T AT

0.9
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