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Report at HEAC 1971 

CBX layout (1962) 

 1965, Priceton-Stanford CBX:  First mention of an 8-pole magnet 

 Observed vertical resistive wall instability 

 With octupoles, increased beam current from ~5 to 500 mA 

 CERN PS: In 1959 had 10 octupoles; not used until 1968 

 At 1012 protons/pulse observed (1st time) head-tail instability.   

 Octupoles helped. 

 Once understood, chromaticity jump at transition  

 was developed using sextupoles. 

 More instabilities were discovered; helped by octupoles  

 and by feedback. 
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How to make a high-intensity machine?   
(OR, how to make a high-intensity beam stable?) 

1. Landau damping – the beam’s “immune system”.  It is 
related to the spread of betatron oscillation 
frequencies.  The larger the spread, the more stable 
the beam is against collective instabilities. 

 

2. External damping (feed-back) system – presently the 
most commonly used mechanism to keep the beam 
stable. 

• Can not be used for some instabilities (head-tail) 

• Noise 

• Difficult in linacs 
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Most accelerators rely on both 

 LHC 

 Has a transverse feedback system 

 Has 336 Landau Damping Octupoles 

 Provide tune spread of 0.001 at 1-sigma at injection 

 In all machines there is a trade-off between 

 Landau damping and dynamic aperture. 

• …But it does not have to be. 
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Today’s talk will be about… 

 … How to improve beam’s immune system (Landau damping 
through betatron frequency spread) 
 Tune spread not ~0.001 but 10-50% 

What can be wrong with the immune 
system? 
 The main feature of all present accelerators – particles have 

nearly identical betatron frequencies (tunes) by design.  This 
results in two problems: 
I. Single particle motion can be unstable due to resonant 

perturbations (magnet imperfections and non-linear elements); 

II. Landau damping of instabilities is suppressed because the 
frequency spread is small. 



6 

Courant-Snyder Invariant 

 Courant and Snyder found a conserved quantity: 
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Linear function of actions:  
good or bad? 

 It is convenient (to have linear optics), easy to model, …but it is 
NOT good for stability. 

 We did not know  (until now) how to make it any other way! 

 To create the tune spread, we add non-linear elements (octupoles) 
as best we can 

 Destroys integrability! 
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yyxxyx JJJJH  ),(

octupole 

Tune spread depends  on  
a linear tune location 
1-D system:  

Theoretical  max.  
spread is 0.125 

2-D system: 
Max. spread  < 0.05 
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First non-linear accelerator proposals 
(before KAM theory) 

 In a series of reports 1962-65 Yuri Orlov has proposed 
to use non-linear focusing as an alternative to strong 
(linear) focusing. 

 Final report (1965): 
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McMillan nonlinear optics 

 In 1967 E. McMillan published a paper 

 

 

 

 Final report in 1971.  This is what later became known 
as the “McMillan mapping”: 

)(1

1

iii

ii

xfxp

px









CBxAx

DxBx
xf






2

2

)(

    const 222222  DxppxCxppxBpAx

If A = B = 0 one obtains the Courant-Snyder invariant 
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McMillan 1D mapping 

 At small x: 

 

 Linear matrix:                    Bare tune: 

 

 At large x: 

 

 Linear matrix:                  Tune: 0.25 

 

 Thus, a tune spread of  50-100% is 

 possible! 
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What about 2D optics? 

 How to extend McMillan mapping into 2-D? 

 Danilov, Perevedentsev found two 2-D examples: 

 Round beam: xpy - ypx = const 

1. Radial McMillan kick: r/(1 + r2) -- Can be realized with  
an “Electron lens” or in beam-beam head-on collisions 

2. Radial McMillan kick: r/(1 - r2) -- Can be realized with 
solenoids (may be useful for linacs) 

 In general, the problem is that the Laplace equation 
couples x and y fields of the non-linear thin lens 
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1 octupole in a linear 2-D lattice 

Typical phase space  portrait: 

1. Regular orbits at small amplitudes 

2. Resonant islands + chaos at larger 

amplitudes; 

 

 Are there “magic” nonlinearities that  

create large spread and zero resonance 

strength?  

 

The answer is – yes  

(we call them “integrable”) 

 



Long-term stability 
 The first paper on the subject was written by Nikolay Nekhoroshev in 1971 

 

 

 

 

 

 He proved that for sufficiently small ε  

 provided that H0(I) meets certain conditions know as steepness 

 Convex and quasi-convex functions H0(I) are the steepest 

 An example of a NON-STEEP function is a linear function 

 

 Another example of a NON-STEEP function is 
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Non-linear Hamiltonians 
 We were looking for (and found) non-linear 2-D steep 

Hamiltonians that can be implemented in an accelerator 

 Other authors worked on this subject recently: J. Cary, W. 
Wan et al., S. Danilov, E. Perevedentsev 

 The problem in 2-D is that the fields of non-linear elements are 
coupled by the Laplace equation. 

 An example of a steep (convex) Hamiltonian is 

 

 but we DO NOT know how to implement it with magnetic 
fields… 
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What are we looking for? 

 We are looking for a 2-D integrable convex non-linear 
Hamiltonian, 

                            -- convex curves 
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Our approach 
 See: Phys. Rev. ST Accel. Beams 13, 084002 

 Start with a round axially-symmetric LINEAR focusing 
lattice (FOFO) 
 Add special non-linear potential V(x,y,s) such that 

400
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Special time-dependent potential 

 Let’s consider a Hamiltonian 

 

 

where V(x,y,s) satisfies the Laplace equation in 2d: 

 

 In normalized variables we will have: 

 
  ),,(

2222

2222

syxV
yx

sK
pp

H
yx 










 
 )(,)(,)()(

22

2222

 syxV
yxpp

H NN
NNyNxN

N 







0),(),,(  yxVsyxV

 




s

0
)s(

d
)(




s
sWhere new “time” variable is 

 

,
)(2

)(
)(

,
)(

s

zs
spp

s

z
z

N

N















Four main ideas 
1. Chose the potential to be time-independent in new 

variables 

 

 

2. Element of periodicity 

 

 

 

3. Find potentials U(x, y) with the second integral of 
motion  

4. Convert Hamiltonian to action variables 

 and check it for steepness 
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Integrable 2-D Hamiltonians 
 Look for second integrals quadratic in momentum 

 All such potentials are separable in some variables 
(cartesian, polar, elliptic, parabolic) 

 First comprehensive study by Gaston Darboux (1901) 

 So, we are looking for integrable potentials such that 
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Second integral: 



Darboux equation (1901) 
 Let a ≠ 0 and c ≠ 0, then we will take a = 1 

 

 General solution 

 

 

 

 

 

ξ : [1, ∞], η : [-1, 1],   f and g arbitrary functions 
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The second integral 
 The 2nd integral 

 

 

 Example:  
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Laplace equation 
 Now we look for potentials that also satisfy the Laplace 

equation (in addition to the Darboux equation): 

 

 

 We found a family with 4 free parameters (b, c, d, t): 
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The integrable Hamiltonian 
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 Magnetostatic case 

B

  







 ...)(

35

16
)(

15

8
)(

3

2
)(Im, 8

6

6

4

4

2

2

2
iyx

c
iyx

c
iyx

c
iyx

c

t
yxUFor |z| < c 



Convex Hamiltonian 

 This Hamiltonian is convex (steep) 

 Example of tunes for t = 0.4 
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For t -> 0.5 tune spreads of ~ 100% is possible 



How to realize it? 

 Need to create an element 

 of periodicity. 

 The T-insert can also be 

 

 

 

which results in a phase advance 0.5 (180 degrees) for the 
T-insert. 

 The drift space L can give the phase advance of at most 
0.5 (180 degrees). 
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How to make the Hamiltonian 
time-independent? 

 Example: quadrupoles 
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Possible location at Fermilab 
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Existing NML building Photoinjector and low 
energy test beamlines 

up to 6 
cryomodules High energy test 

beamlines 

New tunnel extension 

New cryoplant and 
horizontal cryomodule 

test stands 

Possible 10m 
storage ring 

75 meters 
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Nonlinear  
Lens Block 

mx,my=0.5 

x 

y 

Dx 

e- Energy 150 MeV 

Circumference 38 m 

Dipole field 0.5 T 

Betatron tunes Qx=Qy=3.2 
(2.4 to 3.6) 

Radiation damping time  1-2 s  
(107 turns) 

Equilibrium emittance, 
rms, non-norm 

0.06 mm 

Nonlinear lens block 

Length 2.5 m 

Number of 
elements 

20 

Element length 0.1 m 

Max. gradient 1 T/m 

Pole-to-pole 
distance (min) 

~ 2 cm 
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Non-linear elements section 
 Number of elements per section: 20 – 30 

 Section length: 2 -3 m 
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How to make these elements? 
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Proposal 1: custom-built magnet 

Proposal 2: multipole expansion  



    Phase space with t<0.5, r<c 

32 

At Ax,Ay<0.5c trajectories remain inside r=c circle. Multipole expansion is valid. 



    Phase space with t<0.5, r>c 
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Motion is stable. Can not use multipole expansion of the potential. 



    Phase space with t>0.5 

34 

y=0 is unstable point. Still, it is possible to contain trajectories with x<c but y>c 



How much tune spread? 
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c=10 mm 
pipe radius = 7 mm 
beam within r=5 mm 

Dipole moment spectrum 
tracking one cell Q0=0.8 dQmax=0.3 
dQy=0.15, dQx=0.06 
with 4 cells -> dQy=0.45, dQx=0.24 

Conservative variant: round pipe, multipole n=9 

dQmax is determined by phase advance in drift. Maximum is 0.5 



How much tune spread? 

36 

c=10 mm 
pipe size x=5  y=35 mm 
beam within x=2 mm 

Dipole moment spectrum 
tracking one cell Q0=0.8 dQmax=0.3 
dQy=0.25, dQx=0.12 
with 4 cells -> dQy=1, dQx=0.48 

Less conservative variant: ‘true’ lens, t<0.5 



How much tune spread? 
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c=10 mm 
pipe size x=5  y=35 mm 
beam within x=2.5 mm 

Dipole moment spectrum 
tracking one cell Q0=0.8 dQmax=0.5 
dQy=0.5, dQx=0.2 
with 4 cells -> dQy=2, dQx=0.8 

Full blast: ‘true’ lens, t=1.5 



Effects of imperfections 
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c=10 mm 
pipe radius = 7 mm 
beam within r=5 mm 
dQy=0.4, dQx=0.2 

Stability is preserved with 
•Transverse misalignments r.m.s. up to 0.5 mm 
•Synchrotron oscillations sE0.001, C=-15 
•x/y difference up to 10% 
•mx≠my≠0.5 up to 0.01 
•Sextupoles in the arcs DAx=c 

Conservative variant: round pipe, multipole n=9 
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Current and Proposed Studies 
Numerical Simulations 

 Nonlinear lenses implemented in a 
multi-particle tracking code (MAD-
X and PTC) 

 Studied particle stability 
 Effects of imperfections (phase 

advance, beta-functions, etc.) - 
acceptable 

 Synchrotron motion - acceptable 
 Number of nonlinear lenses - 20 

 Simulated observable tune spread 
 To Do: 

 Ring nonlinearities 
 Chromaticity 

Possible Experiments at Test Ring 
 Demonstrate large betatron tune 

spread 

 Demonstrate part of the beam 
crossing integer resonance 

 Map phase space with pencil beam 
by varying an injection error 

Spectrum of horizontal dipole moment 
Q0=0.9x4=3.6 
5000 particles 
8000 revolutions 
But up to 106 revolutions simulated 

All particles 
are stable! 
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Fermilab interests 

 Academic: 

 no resonances 

 long-term stability at large amplitudes 

 large tune spreads – Landau damping 

 Practical: 

 Electron machines 

 large dynamic apertures 

 Proton machines 

 super-high currents 

 instability damping 

Relevant to DOE/HEP 



Conclusions 
 We found first examples of completely integrable non-

linear optics. 
 Tune spreads of 50% are possible.  In our test ring 

simulation we achieved tune spread of about 1.5 (out of 
3.6); 

 Nonlinear “integrable” accelerator optics has 
advanced to possible practical implementations  
 Provides “infinite” Landau damping 

 Potential to make an order of magnitude jump in beam 
brightness and intensity 

 Fermilab is in a good position to use of all these 
developments for next accelerator projects 

 Rings or linacs 
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Extra slides 
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Example of time-independent 
Hamiltonians 
 Octupole 
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This Hamiltonian is NOT integrable 

Tune spread (in both x and y) is 
limited to ~12% 
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Example of integrable  
nonlinear Hamiltonian 

 This gives EXACT integrability 

 

 

 Not all trajectories encircle 
the singularity! 
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Spectrum of vertical dipole moment. Q0=0.905x4=3.62 


