Commissioning and Initial Operation of FERMI@Elettra FEL

S. Di Mitri, on behalf of the FERMI Team

BERKELEY LAB
LAWRENCE BERKELEY NATIONAL LABORATORY

LBNL, 17 April 2012
Outline

- Project Overview and Achievements
 - Photon Beamlines, Design Goals and Achievements

- e-Beam Commissioning
 - Extraction, Compression, Emittance, Wakefields

- FEL Commissioning
 - Seeding, Optimization, Coherence, Recent Studies

- Users Operation
 - Preliminary Results
FERMI Project Overview & Achievements

Science, Design and Achievements
SINCROTRONE TRIESTE is a nonprofit shareholder company of Italian national interest, established in 1987 to construct and manage synchrotron light sources as international facilities.

FERMI@Elettra FEL:
100 – 4 nm, fully funded

- **Sponsors:**
 - Italian Minister of University and Research (MIUR)
 - Regione Auton. Friuli Venezia Giulia
 - European Investment Bank (EIB)
 - European Research Council (ERC)
 - European Commission (EC)

- **Collaborations:**
 - INFN
 - ENEA
 - MIT
 - DESY
 - and many others...

ELETTRA Synchrotron Light Source:
up to 2.4 GeV, top-up mode,
768 proposals from 39 countries in 2010

- 200 m Linac Tunnel + Injector Extension
- ~100 m Undulator Hall

S. Di Mitri, Seminar at LBNL, 17 April 2012
Fermi Photon Beamlines

Elastic and Inelastic Scattering (coord. C. Masciovecchio)
- Transient grating spectroscopy transform-limited bandwidth
- Pump & Probe Spectroscopy, including ultra-fast magnetization dynamics brightness, λ-tunability

Diffraction and Projection Imaging (coord. M. Kiskinova)
- Single-shot CDI (bio and solid state structures)
- Resonant CDI (chemical and magnetic imaging)
- Time-resolved CDI (morphology and internal structure at the nm scale)

Low Density Matter (coord. C. Callegari)
- Structure of nano-clusters brightness
- High resolution spectroscopy narrow bw, λ-tunability
- Ionization Dynamics circular polarization
- Catalysis in nano-materials fs pulse and stability

Head of Science:
Prof. F. Parmigiani

S. Di Mitri, Seminar at LBNL, 17 April 2012
FERMI is a **single-pass, 10/50Hz, externally seeded FEL facility of soft X-rays**:

- high peak power: 0.3 to GW’s range
- short temporal structure: sub-ps to 10 fs time scale
- tunable wavelength: APPLE II-type undulators
- variable polarization: horizontal/circular/vertical

peak brilliance: \(10^{30} - 10^{31}\) ph/sec/mm\(^2\)/mrad\(^2\)/0.1\%bw

flux: \(10^{12} - 10^{14}\) ph/pulse

bandwidth: \(~\text{Fourier Transform Limit}\)

FEL SCHEME

S. Di Mitri, Seminar at LBNL,
17 April 2012
RF Photo-cathode Gun and Injector + up to 1.35 GeV Linac
- 2 Magnetic Bunch Length Compressors + 2 Bunch Length Monitors
- 2 RF Vertical Deflectors for time-resolved measurements
- 4 Diagnostic Stations + 5 Spectrometers
- 3 Collimation sections
- Planar/APPLE-type Undulators + RF BPMs + γ/e- Screens + EOS + Quad-movers
- Photon Diagnostics Hutch + X-ray Transport + 3 Beamlines
- Still NOT fully commissioned (but already in place): X-band & Laser Heater

S. Di Mitri, Seminar at LBNL, 17 April 2012
FACILITY ("real")
OTHER MACHINE SYSTEMS...

- **Controls** (news in M. Lonza’s, G. Gaio’s and L. Pivetta’s talk at ICALEPCS 2011)
 - Tango-based
 - Real-time framework
 - Elegant-based on-line optics control
 - MATLAB for Mach. Phys. Applications
 - Scientific Data Management

- **Diagnostics** (see R. De Monte’s talk and “Elettra” contributions at DIPAC 2011)
 - Electro-Optical Sampling
 - Bunch Length Monitor
 - Bunch Arrival Monitor
 - 2µm-res. RF Cavity BPMs
 - Intra-Undulator Screens

- **Timing & Synchronization** (see M. Ferianis’ talk at FEL Conf. 2011)
 - All-optical timing system
 - Synchronization with femtosecond precision

- **Machine Protection System** (see L. Froehlich’s talk at DIPAC 2011)
 - Cerenkov fiber beam loss posit. monitor
 - On-line dosimeter with MOSFETs
 - Ionization chamber beam loss monitor

- **Lasers** (see M. Danailov’ talk at FEL Conf. 2011)
MILESTONES

- PI Laser, Gun & Injector: 2009 – 2.5 months. (2008, first Gun tests at MAX-lab.)

- Linac & First Bunch Length Compressor: 2010 – 3.5 months.

- Transfer Line to Main Beam Dump: 2010 – 1.5 month.

- 1st Coherent Emission at 43 nm: 2010 – 1.5 months. (13 Dec. 2010)

 Coherent X-rays within 9 months after warm-up

- FEL Exponential Gain, Polarization & Tunability: 2011 – 1.5 months.

- 65 – 32.5 nm to LDM, TIMEX & DIPROI Lines: 2011 – 1.5 months.

 First user tests 5 months after 1st coherent output

S. Di Mitri, Seminar at LBNL, 17 April 2012
DESIGN GOALS & ACHIEVEMENTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FEL-1</th>
<th>FEL-2</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Wavelength (fund.)</td>
<td>80 (65) – 20</td>
<td>20 – 4</td>
<td>nm</td>
</tr>
<tr>
<td>Peak Power</td>
<td>1 – 5</td>
<td>> 0.3</td>
<td>GW</td>
</tr>
<tr>
<td>Energy</td>
<td>1.2 (1.35)</td>
<td>1.5</td>
<td>GeV</td>
</tr>
<tr>
<td>Charge</td>
<td>250 – 800 (500)</td>
<td>800</td>
<td>A</td>
</tr>
<tr>
<td>Peak Current (core)</td>
<td>200 – 800 (350)</td>
<td>800</td>
<td>A</td>
</tr>
<tr>
<td>Slice Norm. Emittance</td>
<td>1.5 – 3.0</td>
<td>1.0</td>
<td>mm mrad</td>
</tr>
<tr>
<td>Slice Energy Spread</td>
<td>~0.20</td>
<td>0.15</td>
<td>MeV</td>
</tr>
</tbody>
</table>

$\Delta t \Delta \nu \approx 1.5 \cdot 0.44 \ (FWHM)$

$\frac{\Delta I}{I} \leq 10\%$

$\frac{\Delta \lambda_0}{\lambda_0} \leq 5 \cdot 10^{-5}$

$\frac{\Delta b_w}{b_w} \leq 3\%$

FEL on YAG

FEL TEM$_{00}$ Gaussian mode.
Up to 10^{13} photons per pulse at 43 nm.

S. Di Mitri, Seminar at LBNL, 17 April 2012
e-Beam Commissioning

Extraction, Compression, Emittance, Wakefields
After UV/Ozone cleaning* routinely implemented at machine start-up: **QE restored.**

After 2 months operation: **QE depletion**

The Cu cathode surface is sampled by a 200 μm, 10 μJ laser.

Gaussian spot (r=0.53mm) is the best compromise between cathode surface stress and emittance performance.

* see M. Trovo’ et al., *Workshop on PC for RF Guns*, Lecce, Italy (March 2011).
"CSR"-induced ε_x growth is minimized by shrinking β_x in the 2nd half of BC1. Optics matching is done at each step of RF phasing.*

* S. Di Mitri et al., PRST-AB 15, 020701 (2012).
The linac transverse wakefields are minimized with scans of beam size vs. trajectory offsets, possibly at different screens.

Modeling of the linac longitudinal wakefields was experimentally benchmarked with 1 MeV accuracy.
Final proj. $\varepsilon_{x,y}$ is important for matching into the undulator, finally for a higher FEL gain. Source of degradation: **CSR, transverse wakefield**. Knob for restore: **optics**.

This has been preserved through Spreader and FEL1 with -l transport matrix*

350pC, 6.5ps BC1 and BC2 at 5°

S. Di Mitri, Seminar at LBNL, 17 April 2012

SPECIAL DIAGNOSTICS

Cavity BPMs
Res. 1.2 µm • Range ±1.5 mm

Electro-Optical Sampling
Measured jitter 80 fs

Fiber Beam Loss Monitor
Resolution 50 cm

Bunch Arrival Time Mon.
Resolution <20 fs

RADFET Online Dosimetry
Integrating solid-state sensors

Res. 1.2 µm • Range ±1.5 mm

Measured jitter 80 fs

500 pC

F. Rossi, G. Penco

S. Di Mitri, Seminar at LBNL,
17 April 2012

Courtesy of L. Froehlich, R. De Monte,
M. Veronese, F. Rossi, G. Penco et al.