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Overview 

Two areas of interest for next-generation light-source design: 

I. Realistic transfer maps (20-25 min) 
  Surface methods for computing symplectic maps 
  Method for general magnetic elements 
  Benchmarks and applications 

II. Injector simulation (20-25 min)  
  Motivation:  injectors for high-average power FELs 
  Numerical challenges and benchmarks 
  Simulation results and optimization studies 



I. Realistic transfer maps 
  A collection of methods has been developed that makes it possible to compute 

accurate high-order transfer maps for realistic beam-line elements to be used in 
charged-particle optics codes. 

  Such methods use 3-d field data, provided on a grid by finite element modeling,  
      to incorporate fringe field effects and nonlinear multipoles into a map description of 

beam dynamics. 

  Once accurate transfer maps have been found for individual beam-line elements, 
one can determine all single-particle properties of the machine:  dynamic aperture, 
tunes, chromaticities, anharmonicities, linear and nonlinear lattice functions, etc. 

  Key is the use of surface data to compute interior data.  Surface must enclose design 
trajectory and lie within all iron or other sources. 



Any analytic symplectic map which also maps the origin into itself can be written
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where        is the linear part of the map, represented by a matrix       , and
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Lie-algebraic map methods
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Given the phase space coordinates                                , we represent the dynamics of a 

single particle in each beamline element as a mapping:
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Computing Accurate Maps


Suppose E = 0.   To obtain the          , we need expressions of the form:
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Field data may be available on some 3-d mesh  
•   measured data (3d magnetic sensors) 
•   electromagnetic field solvers (eg., finite-element codes) 
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Numerical differentiation is unreliable for high-order           due to amplification of noise. 
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Noise spectrum ~ flat to 
Introduces weight to high spatial frequencies not present in true field  
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Surface Fitting 
•  Fit measured/numerical field data to the boundary surface of a volume   
containing the design trajectory and excluding all iron or other sources (eg., a 
long “cylinder” in z with uniform cross-section). 

•  Interpolate inward using Maxwell’s equations.  In a source-free region, 
solutions are smooth (analytic) functions. 

•  Obtain an analytic representation of the interior vector potential A and its 
Taylor coefficients          in terms of surface data alone. 

•  Highly accurate and robust against numerical errors.  Errors are damped as 
 one moves away from the surface into the interior.   € 
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• Solenoids and multipoles -- circular cylinder (M. Venturini) 

• RF cavities -- circular cylinder (D. Abell) 

• Wiggler magnets -- elliptical / rectangular / circular cylinder (C. Mitchell) 

• Bending dipoles -- bent box / bent cylinder (C. Mitchell, P. Walstrom) 

Accurate transfer maps can now be computed for realistic beamline elements of any 
 machine, e.g. the ILC damping rings, using surface methods: 

use known Green’s  
function  

use new geometry-independent integration kernels 

Consider the bent box. 



The Bent Box and Other Geometries 

•  For straight-axis cylinder domains, only the normal component of  B on the 
surface is needed to determine the interior vector potential. 

•  The circular, elliptical, and rectangular cylinder are special in that Laplace’s 
equation is separable for these domains.  This is not always possible. 

•  Surface data for general domains can again be used to fit interior data provided 
both            and        are available on the surface.  The magnetic vector potential in 
the interior can be determined by the integration of surface data against a geometry-
independent kernel. 
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a “bent box” geometry  
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An (r) = [n( ′ r ) ⋅ B( ′ r )]G n (r; ′ r ,m( ′ r ))d ′ S 
S
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Using the Helmholtz theorem and results relating to Dirac monopoles, we 
may write the interior vector potential in terms of surface data in the form 

The kernels are given by: 
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normal component 

tangential components 

where m is a unit vector pointing along some line that does not intersect 
the interior (a Dirac string), and n is the unit normal to the surface at      . 

, where 
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General Surfaces 



Given a point along the design orbit, we may construct a power series for  A  
about     by integrating the surface data against the power series for the     ’s, 
term-by-term. 

nG tG

Gdr

This has been implemented numerically to compute coefficients      of the vector 
potential about any point on the design orbit. 
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The kernels        and       satisfy these properties: 

•   Each is analytic in the variables  r  at all points in the interior. 

•                                                                        for all points r  in the interior. 

•                                                                       for all points r  in the interior.                               
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∇ × (∇ ×G t (r; ′ r )) =∇ × (∇ ×Gn (r;r',m)) = 0

As a result, the vector potential A is guaranteed to satisfy Maxwell’s equations 
                                  and the Coulomb gauge condition                . 

€ 

∇ ⋅ A = 0
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∇ × (∇ × A) =∇ × B = 0

Each Taylor coefficient is obtained from a single surface integration. 



1)  Vector potential A at any interior point (gauge specified by orientation 
of strings) 

2)  Taylor coefficients of A about any design point through degree N 

 which in turn are used to compute… 
3)  Interior field B at any point 
4)  Taylor coefficients of B about any point 
5)   

Code accepts as input 3d data of the form            on a mesh and will 
produce as output: 

benchmark tools 
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(B,ψ)

Code produces interior fits that satisfy Maxwell’s equations exactly even if the surface  
data is noisy and the required surface integrals are performed only approximately. 

Transfer maps are then computed from the Taylor expansion of     along the design 
orbit. 
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Monopole Doublet Benchmark 

g = 1 T-cm2, a = 2.5 cm 

8.65 MeV positrons:  30 degree bend 

Exactly soluble, numerically 
challenging test field. 
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+g 

•  Magnetic field and its Taylor coefficients are known exactly. 

•  Vector potential and its Taylor coefficients are known exactly in one gauge. 

•  Integrate to obtain the reference trajectory and the map about the  
  reference trajectory using 1) exact vector potential, 2) vector potential computed 
  from surface data. 

compared 



Ax 

Az 

relative error 
= 10-6 

Computed magnetic field Computed vector potential 



Reference trajectory 
largest error in x,  
relative to peak excursion, 
is 5 x 10-7 

Coefficient of y3 in Bz Coefficient of xy2 in By  

Field coefficients 
worst error/peak ~ 10-4 

typical error < 10-5 



Largest error in linear map and nonlinear generators through  f4 :  ~ 10-4 

Error scales as     for trajectories near the reference trajectory, as expected, 

where                               . 

Comparison of Maps 

€ 

Δ = z in − z in,ref

  

€ 

M(z in ) − zout

€ 

z in − z in,ref

€ 

Δ4



Fitting NSLS-II Dipole Data Using a Bent Box 

Data provided for the 35-mm gap  
Brookhaven dipole on the domain: 
   x in [-0.06, 0.06] m,  
   y in [-0.016, 0.016] m,  
   z  in [-1.8, 1.8] m,  
Spacing of mesh points h = 2 mm 

The interior magnetic field was obtained 
and compared against the numerically 
computed values provided at the interior 
mesh points. 

The three components of vector potential  
and their Taylor coefficients were computed  
through 4th degree to obtain a design orbit and 
the 3rd order transfer map about that orbit. 

3 GeV electrons:  6 degree bend 



Fit to vertical field By  
at x=0 cm, y=0.2 cm.  

Fit to the NSLS-II Dipole Field Using a Bent Box 

fringe field 
behavior 

error = 4 x 10-4 



Fit to the NSLS-II Dipole Field Using a Bent Box 

error in  
peak field  
= 3 x 10-4 

Fit to longitudinal field 
Bz at x=0 cm, y=0.2 cm.  



Fit to the NSLS-II Dipole Field Using a Bent Box 

Reference trajectory 



Advantages of surface fitting 

Surface methods have many advantages over on-axis or midplane fitting: 

  Maxwell equations are exactly satisfied.   

  Error is globally controlled.  The error must take all extrema on the boundary, 
where we have done a controlled fit. 

  Careful benchmarking against analytic results for arrays of magnetic monopoles. 

  Surface integration is smoothing. Insensitivity to noise improves with increased 
distance from the surface. 

      For example, in a magnetic monopole doublet test case, adding a 1% surface noise 
produced only a 0.01% change in the computed transfer map. 

These techniques have been applied to compute maps for NSLS-II dipoles and 
ILC damping ring wigglers.  



II.  Injectors for High-Average Power FELs 

•  High average power FELs require a train of high quality bunches with high average  
  current.  These requirements place stringent constraints on the electron injector  
  portion of the FEL. 

•  Photocathode guns are capable of generating short, high-quality and high-charge 
  electron bunches and are employed in the majority of FELs.  However,     
  photocathodes face limitations when operated at high-average powers. 

•  Thermionic guns have demonstrated long life-time operation and high current densities.    
  The use of an RF-gated grid may allow one to achieve high repetition rates and ~1 nC  
  bunches using thermionic cathodes. 

•  A numerical and experimental program is in place to investigate RF-gated emission  
  using an IOT thermionic injector gun. 



Electron Beam Quality Requirements 
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•  FEL beam quality requirement entering wiggler   
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•  Typical parameters for a beam entering MW-class FEL wiggler 



High-Average Current Injector 

€ 

εn,z ~ 100 keV − psec
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εn,⊥ ~ 10 −15mm−mrad

Booster Chicane Pre Booster 
RF Gated 

Thermionic
Gun 

ERL 
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εn,⊥ ~ 5−10mm−mrad
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εn,z ~ 30 keV − psec
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Eb ~ 30 −100keV

700 MHz 



Pre‐booster cavi.es 
RF drive 

fundamental  
(700 MHz) 
+ harmonics 

Thermionic  
cathode 

Anode 

Pyroly.c grid  
w/ DC bias 

Electron bunches 
(~ 50 psec, ~ 1 A)  

RF Gated Gridded Thermionic Injector 

grid wire separation 450 µm 
grid wire radius 30 µm 

3 cm 

Booster 

Chicane 

 ERL 



Emission occurs only during the portion of RF phase when Ez < 0 in the gap, 
providing longitudinal bunching. 

The addition of the higher harmonics provides shorter bunches. 



Numerical Challenges 

  Proper modeling of thermionic emission from the cathode. 

  Large difference in spatial scales between the cathode-grid gap (250 µm) and the 
main body of the gun (5 cm). 

  Complex geometry of the conducting surfaces, especially the grid wires. 

  Absence of azimuthal symmetry suggests 3d simulation may be necessary. 

  Presence of an externally driven rf field.  Fully electromagnetic simulation? 

RF wavelength/cathode radius = 30 



•  Originally designed for treatment of (static) gridded electron guns, collectors. 

•  Correct boundary conditions are enforced (image charges present on all 
      conducting surfaces) 

•  Contains a fully 3d, time-dependent particle-in-cell code. 

•  Can read-in a 3d CAD model of the gun geometry. 

•  Unstructured meshing allows fine-scale resolution of grid wires. 

•  ANALYST package includes a 3d solver for time-dependent, driven RF fields. 

MICHELLE (NRL, SAIC, AWR Corp.) 



•  Model 
  Geometry – SolidWorks volume, 2d vs 3d effects, symmetry 
  Boundary conditions 

•  Numerical convergence 
  Mesh quality – element size/gap << 1, element size/Debye length < 1 
  Timestep – timestep/transit time << 1, element crossings/timestep < 1, timestep*plasma freq < 1 
  Number of particles – typically 105-106 

•  Algorithm 
  Emission models 
  Integration of the equations of motion 
  Finite-element field solver 
  Particle and field weighting 

•  Diagnostics 
  Current 
  Bunch size 
  Emittance 

Evaluating MICHELLE Simulation of Injector Gun 



cathode 

anode 

focus 

grid 

2d Gun Modeling in ANALYST 

5 cm 

1.5 cm 

symmetry axis 

Neumann boundaries 

0.4 cm 



Length scales – cathode-grid gap  ~ 250 µm 
     cathode radius  ~ 1.5 cm 

      gun length  ~ 5 cm 

Time scales –   transit time across the gap  ~ 90 psec 
           transit time across the gun  ~ 1.2 nsec 

                         RF period  ~ 1.4 nsec 

Charge scales – maximum charge supported in the gap ~ 2 nC 
                          bunch charge  ~ 1 nC 
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TCL = 3L m /2eV0
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QCL =
4
3
ε0V0 /L

transit time / timestep  > 100   gap distance / mesh size ≈ 20 
element crossings / timestep ≤ 1 

Resolution of the cathode-grid region: 

Numerical Convergence 

L cathode-grid gap 



unstructured meshing: 
resolution of the cathode-grid 
region 

~ 15 element crossings 
 between cathode and grid 

A 2d steady-state run is performed  
for a fixed anode potential (35 kV). 
Taking ½ the mesh element size  
results in a change in both the 
 emitted current and the emittance  
of < 1%. 

11/9/2010 

Mesh Quality 



Emission Algorithm 
At the cathode, a fixed number of particles are launched from each element face. 
Models of current vs voltage are used to determine how charge is deposited on the mesh. 
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•  Space-charge limited (Child-Langmuir) 

•  Temperature limited (Richardson-Dushman-Schottky) 

•  Transition region (Longo-Vaughn) 

V – potential difference 
d – gap distance 
    – charge/mass ratio 

     – work function 
T  – cathode temperature 
E  – field magnitude at cathode 
A0 – numerical constant 

exponent      characterizes how sharply 
transition occurs  
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cathode:   
0 V 

anode:  
3 kV 

trajectories 

3 m 

Benchmarks of the Emission Model 

11/9/2010 33 

Simulation of a plane diode (Child-Langmuir) 



Child-Langmuir current:  133.870 mA 

Computed current:  133.874 mA 

Relative error:  
7 x 10-4 

Relative error: 
3 x 10-5 

space-charged limited emission 

Child-Langmuir Benchmark 

anode:  
3 kV 



Measured current 
2d MICHELLE simula.on 
3d MICHELLE simula.on 

Nega.ve grid bias (V) 

Cu
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en

t (
A
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Steady-state current for the CPI gun:  
comparison with experimental data at 31 kV 

10-15% 



Longitudinal bunching in the gap 

11/9/2010 36 

Time-dependent current in a plane diode 

grid 

return charge 

emission window 

emission window 

V(t)    V0 
phase slippage 



Longitudinal bunching in the gap 
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0 2 4 6 8 

ΔT/TCL 

Q/QCL 

t/TCL 

no charge crosses the gap 

transition to 
asymptotic scaling 

•  No charge makes it across when: 
  ΔT < TCL/2. 

•  Asymptotic behavior for 
  ΔT  > TCL. 

•  Describes bunch charge and rms 
  pulse width at the grid.  

€ 

TCL = 3L m /2eV0

€ 

QCL =
4
3
ε0V0 /L

Natural time and charge scales 



2d Simulation Results 

ωt=220 deg 

ωt=180 deg 

ωt=155 deg  Rep rate:  700 MHz 
Charge:  0.9 nC 
Average current:  0.6 A 
Peak current density:  8.8 A/cm2 

hole 

35 kV 

35 kV 

35 kV 

color denotes values of           
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βzγ

red – maximum 
blue – minimum  

In this simulation, emission is 
restricted to a portion of the cathode 
surface. 



color denotes values of           
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βzγ

Close-up of emission region: 

Emission takes place primarily between grid wires due to variations of the field 
across the cathode surface. 

The grid divides the beam into a collection of focusing beamlets. 



Bunch radius (rms):  0.43 cm 
Bunch duration (rms):  54 psec 
Energy spread (rms):  5% 

Phase Space at Gun Exit 

Transverse phase space  Longitudinal phase space 

Normalized x-emittance: 28 mm-mrad Normalized z-emittance:  20 keV-ps 



2d model 

3d model 

35 kV, ‐450 V grid bias, parameters for 0.9 nC bunch 

Difference at peak:   
             18% 

Comparison of 2d and 3d Current Pulses 

emiZed current  collected current 



Comparison of 2d and 3d Bunch Diagnostics 

2d Simulation  
Bunch charge (nC) = 0.88 
 Average energy (keV) =  35.147 
 Transit time (nsec) =  0.99372 
 xrms (cm) =  0.30181 
 x-Emittance (mm-mrad) =  28.616 
 z-Emittance (keV-ps) =  19.6297 
 RMS dt (psec) =  54.408 
 RMS dW (keV) =  1.8584 

3d Simulation  
Bunch charge (nC) =  0.75 
Average energy (keV) =  35.053 
 Transit time (nsec) =  1.0058 
 xrms (cm) =  0.28035 
x-Emittance (mm-mrad) =  29.156 
 z-Emittance (keV-ps) =  20.8095 
 RMS dt (psec) =  54.761 
 RMS dW (keV) =  1.8037 

15% 

2% 

Good agreement in transverse and longitudinal emittances. 

Can transverse emittance be improved? 



Sources of Injector Gun Emittance 

1. Most emittance growth takes place in the cathode-grid gap. 

2. Primary sources of emittance growth include:   
 - nonuniformity of the fields near the cathode surface 
 - nonlinear scattering fields of the grid wires 

3. Reducing emittance due to fields at the cathode surface 
       - close the hole in the cathode to eliminate nonlinear fields near 
          the inner radius 
       - prevent emission near the outside of the cathode to minimize edge and 
         geometrical effects (overfocusing of outer trajectories) 

4. Reducing emittance due to the grid  
 - reduce the radius of the beam intercepting the grid 
 - increase the energy with which particles intercept the grid 
 - decrease the jump in electric field across the grid 
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G – dimensionless geometrical factor (a function of h/Rb) 
Rb – radius of beam intercepting the grid 
h – distance between grid wires 
ΔEz – jump in longitudinal electric field across the grid at time t 
E – energy of a particle passing between two grid wires at time t 

In the steady-state case,                   where Vg is the potential between two wires. 

emittance of a single slice at time t 

Model of Grid Emittance 

A kick-map approximation can be used to determine the focusing effect of the 
grid on each beamlet, producing an expression for the transverse rms emittance. 
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Grid Emittance of a Bunch 

The bunch is divided  
into slices by  
crossing time (color). 

Each slice receives 
a different focusing 
kick from the grid. 



grid potential 
collected current 
emitted current 

C
urrent (A

) 

Simulation of a Low-Emittance Bunch 



Transverse phase space  Longitudinal phase space 

Phase Space for Low-Emittance Bunch Simulation 

Projected transverse emittance  -  8.7 mm-mrad 

Projected longitudinal emittance -  21 keV-psec 



Summary 

  RF-gated thermionic guns can achieve the high rep rate, high average currents, and 
      short bunch lengths necessary for a high average power FEL. 

  IOT gun designs are not ideal for producing low emittance bunches.  However, 
      emittances < 10 mm-mrad can be obtained if extreme care is taken. 

  Benchmarking against experimental results will be underway as results become 
available. 

  Additional work remains to be done to validate 3d simulation results and complete 
additional design optimization. 


