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Outline

Selected Topics on Space-Charge Effects in Intense Beams

1) US Particle Accelerator School and UC Berkeley courses on
“Beam Physics with Intense Space-Charge”

2) Theory and numerical simulations on optimal Einzel lens transport
3) Multipole expansion for realistic modeling of focusing optics

4) Space-Charge induced transport limits in
quadrupole focusing channels

5) Nonlinear focusing channel for stable beam transport and
possible application to NGLS/APEX



Accelerator school courses taught for 10+ years on

“Beam Physics with Intense Space-Charge”
have been influential in educating a generation of research specialists and
material developed for course relevant to many contemporary research
problems which cannot be found in other sources.

* Taught jointly by J.J. Barnard (Longitudinal) and S.M. Lund (Transverse)

* Semester course equivalents given at:
5X: US Particle Accelerator School

1X: UC Berkeley Nuclear Engineering Deptartment
1X: LBNL (Simulations)

* Course web page (last 2011 version; next 2013) archives notes:
http://hitweb.Ibl.gov/USPAS_2011/
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Cource Details:

Extended Overview (pdf)
Full Topical Outline (pdf)

Lecture Notes:

Lecture notes will be periodically posted on this web site before material is covered
in class. Paper copies of lecture notes will also be handed out in class. Corrections
and additions may also be posted on the web site subsequent to lectures. Material is
organized by topic in the rough order intended to be covered in class. Postings will be
in pdf format including scans of handwritten notes, and conversions of electronic
slides produced in OpenOffice and Microsoft PowerPoint.

* ].J. Barnard Introduction, Envelope Equations. and Current Limits

* S.M. Lund Transverse Particle Dynamics

* 5.M. Lund Transverse Equilibrium Distribution Functions

e S.M. Lund Eigls::;;frgarticle Resonances with Applications to Circular
* ].J. Barnard Injectors and Longitudinal Physics

* ].J. Barnard Continuous Focusing Beam Envelope Modes and Halo
S gegilj;il:e Centroid and Envelope Descriptions of Beam

* S.M. Lund Transverse Kinetic Stability

* ].J. Barnard Pressure, Scattering, and Electron Effects

* ].J. Barnard Final Focusing and Example Applications of Intense Beams
* S.M. Lund Numerical Simulations

* ].J. Barnard Barnard Lectures Summary



Selected Topics on Space-Charge Effects in Intense Beams

2) Theory and numerical simulations on optimal Einzel lens transport



Geometry for Periodic Stacked Washer Einzel Lens
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Applied Fields: Need simple, accurate model to optimize

Laplace Equation for electrostatic field:

0* 10 0
oz T ror g2 ) 97 =0

¢(r, z) = const on washers

Washer potential solved in sclaed geometry using Warp code:
Unipolar T'p /0=1 Bipolar

Electrostatic potential in z—x plane
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Analytical Field Model

Expand potential as:

o0 1 v 821/ 5
Z 2 1/ 321/Z¢0(Z)T2

vr=0,1,-

¢o(z) = ¢(r = 0, z) = on-axis potential

Linear fields from leading-order terms:

s, 1 02y .
EJ_—_E 282(X37+yy)
__ 9., 9%
Bz = 0z — 0z




Approximate Model for On-Axis Potential

Ordinary differential equation:

2
5z 0() ~ 152) = 360 =1y.2)

>
"p

¢(r = rp, 2) = Potential at Aperture

Expand the aperture potential in a periodic Fourier series:

o(r=rp,z)=V Z fn cos (27mz)

Ly
n=0,1,3,--
fn = Fourier Coeflicients fro = fn(rp/L)

Periodic solution:

- o0 fo 2Tz
do(2) =V Z 1+ (nmry/Ly)? COS( Ly )

n=0,1,3,---




Symmetry relations connecting unipolar and bipolar solutions
shows that:

f ("“_p)_ 5. Unipolar (T_p): g (), Unipolar
ANV 0, Bipolar n\7y 2Gn (%%p)’ Bipolar

grn, = common coeflicient function

Data from parametric Warp numerical field solutions and
nonlinear numerical curve fitting show that the harmonic

coeftficients are well fit by:
#+ Thin washers + Large radial extent washers

gn = Cn,1 €XP [_CTLQ(TP/E)ﬂ
Only 8 numbers

n Cn,1 ‘n,2 to describe first
1 0.3891 0.5823 harmonics up to
3 0.04873 4.740 n=28!

D 0.01846 12.89

7 0.009738 24.88




Linear field model 1s extremely accurate over a wide range of geometric
aspect ratios for both unipolar and bipolar systems
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WAREP solution (dashed curves) almost exactly overlays reduced field
model with fit coefficients (solid curves)!

¥ Reduced model sets scale of potential oscillation — needed for correct design limits!
+ Reduced model accuracy enables accurate envelope models without full simulation



Radial extent of Einzel lens system can be modest
without significantly attenuating linear field strength

Smaller radial extent allows:
+ Compact radial structures + Clearance for voltage holding

For optimum linear focusing aspect ratio r,, /¢ and thin washers:

Linear Field Variation Harmonic Correction Factor
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Washer extents with r,/r, = 2.5 should be sufficient for most applications



Peak field always occurs at outer radial edge of washer
and required thickness can be read off scaling curves

Field Intensity Max Field Scaling
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Plate thickness and radiusing edges of biased washers
necessary to limit peak fields and suppress breakdown

Voltage holding scaling
for distances d 2 1 cm
under vacuum conditions
characteristic of our
classes of machines:

kV /1 cm
cm d

E < 100

A, Faltens, Handbook Accel. Phys.

Maximum Washer Bias, Vs [kV]

Maximum Washer Bias, Vo, [kV]
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Nonlinear fields can be large at high aperture fill factor

WARP used to contour axial and radial nonlinear fields as fractions of
linear focusing values
* Shown for optimum linear focusing aspect ratio 7, /¢ and thin washers
+ Applies to both unipolar and bipolar systems
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Linear Transverse Dynamics

Transverse equation of motion for a particle moving within a uniform
density beam with radius R(z) without applied axial compression:

s 1/2 8<I>X, - 1/4 a%m_ 1 QXJ_—O
L 1—-®9z7F 1-—3 022 (1 —®)3/2 R2
_ @ _ Particle Potential Energy L i
— & Particle Total Energy - dz

Incorporates conservation constraints:

1

§m’03 + qpo = &, = const  Conservation of total longitudinal energy

I =v,\ = const Conservation of current: continuity eqn

and a consistent definition of the perveance Q which reduces to the usual
form axially outside the Einzel lens system: o =0 P =0

_ ql B ql
= 25/27T608§/2/m1/2  2meom (28, /m)3/2

— const




Transform to “normalized coordinates” simplifies
dynamical description

Introduce transformed “tilde” coordinates

1

X| = +\/ dr @ dx' = —di @ di’
X | VX | T K axr o TR dr
5(/:1“; X1 + VX d@d’—ld’“@@d’“’
T2/, ST y@dy = —dj o dy

Then the equation of motion has simplified “Hill's Equation” form

X'| + k(2)XL + kse(2)xL =0

3 (09/9z2\° 4o

= Applied F in b =—

k(2) T ( T ) pplied Focusing g,

1 Q .
Kse(2) = — 1 3)2 12 Space-Charge DeFocusing

Form of applied focusing < shows that Einzel lens

always focusing regardless of the sign of bias V'!
+ Positive V stronger due to 1 — ¢ factor in denominator



Optimal geometric aspect ratios can be evaluated for
the strongest possible Einzel lens focusing

The largest value of the scaled period average focusing strength

2
’I“pli

dz
Efr2/—ﬁ:z
" Jr. Ly (%)

P

k(z) = 6

3 [(0P/0z
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) =%

Provides the strongest possible applied focusing for fixed values of:

r, = const Aperture
qV/E, = const  Scaled Bias
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At optimal aspect ratios

Ly 4 0.9377, Bipolar
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+ Stronger focusing for bipolar relative to unipolar for the same values of
qV /&y yields compact beam sizes
e [llustrate later with envelope results



Single particle stability for optimized Einzel lens focusing

shows that large biases are possible

Phase Advance and Stability Limits: calculated for optimized geometry
using a transfer matrix in transformed variables 3 Tr M| < 1 <= Stability
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* Phase advances very low till near stability limit
+ Biases can be significant fraction of beam energy due to low phase advances
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Envelope model consistent with constants of the motion

in linear field approximation describes beam focusing

rms envelope equation derived in usual manner by averaging over the
particle equations of motion: ® = q¢o/E

R 1/2 ach,_ 1/4 82<I>R_ 1 Q
1—® 0z 1 —® 922 (1—-®)3/2R
1 2(L.)2 /(m&) I 0
1—® R? 1-®R3
Here,
R=2{(x?)) =2(r?), Statistical edge radius
g = const Usual rms edge Emittance before entering Einzel lens
(L,); = const Beam angular momentum (zero most cases)

Matched envelope solution with the periodicity of lattice has optimal
transport properties because 1t minimizes beam excursions

R(z+ L,) = R(z)




Example matched envelopes with strong space-charge
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Characteristic particle oscillations within the beam
typically have extremely low phase advances

Bipolar Focusing with: 7, = 30 mm qV/& =05 Q=5x10""*
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* Shown for large bias to increase oscillation rate: typical numbers much slower!
* Very low phase advances suggest a high degree of stability



Transformed envelope equations can simplity analysis
analogously to the single-particle case

Take:
R=2(i?, =/uR and R = R/(2&,/m)'/*
— R= ! R
(1 - @)1/
This gives:
1 Q 2L} /(m&) £
!/ L _ - =
REFRR=173R R3 R~V
3 /09/9z\° qo
— @ = —
~(2) 16(1—(1)) &,

Matched solution is periodic in transformed or untransformed variables:
R(z+L,) = R(2)
— R(z+L,) =R(2)




Previously shown matched envelopes both without
space-charge and with strong space-charge show little
oscillation when expressed in transtormed variables

Transformed Matched Envelope Radius
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Note scale: Matched envelope variations ~ 0.01% average value!



Accurate transport scaling relations derived which can

be used to rapidly evaluate Einzel lens focusing

Use near constancy of transformed matched envelope and simpler analog
of quadrupole matched envelope analysis by Ed Lee (Phys. Plasmas 2002)
to derive approx formulas for matched envelope properties:

Transformed average matched envelope:

— 1 2(L.)3 /(m& 2
o L Q 2i/mE) e
1—-—DR R
Average untransformed radius: 3 (0B/92 2
7 L = “(Z):lﬁ(l—cb)
i gz s
o 1%
Max envelope excursion: &
1 —
Max|R)| ~ R

(1 — Max]|®])1/4

Numerical checks indicate formulas accurate to ~ 0.01 % for a wide range
of system parameters!



For a limited range of bias the transportable perveance for
optimized geometry 1s accurately estimated by a very simple formula:

Q < 0.0100n2 (qv) (MaX[R])Z

&L Tp

L, {1, Unipolar,

Ng = — =
20 2, Bipolar,
V
" _ 0.9342 2 <05
L, & ™

* Bipolar transports 4x unipolar for same gV /&
- Bipolar and unipolar equally efficient in terms of peak to peak voltage



Scaling relations give transportable Q for a space-
charge dominated beam with optimal geometry for
unipolar and bipolar systems

Transportable perveance depends only on filling factor and scaled bias:

Max[R]| = Beam Extent in Aperture qV' _ Scaled Bias

r,  (Filling Factor) &  (Bias over Beam Energy)
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* Dashed curves based on more approximate, scaling equation



Full Warp r-z PIC beam simulations applied to verify
good transport over many lattice periods

Simulations explore:
+ Viability of transport due to nonlinear fields

- Long path length to sensitively probe possible emittance growth
+ Matching and beam control

Simulation setup:
+ High resolution/statistics enabled by r-z simulations
+ Washer structures placed on grid with detailed particle scraping
+ One lattice period of matched initial beam formed
- Various (Semi-Gauss, Waterbag, Thermal) distributions injected on left
on a stationary grid with particle absorbing boundary conditions on right
- z-velocity spread V2 transverse spread to suppress L / || unstable modes
- Advanced to fill period with stationary beam
- Injection conditions iterated to “nonlinearly” match envelope
- Simulation changed to moving grid with periodic particle boundary
conditions and advanced
+ Period average envelope and normalized emittance histories analyzed

- Allows low noise resolution of mismatch and emittance growth



High space-charge intensity and aperture fill factor
transport result in negligible mismatch and emittance

growth 1n spite of large applied field nonlinearities

Parameters: Q =4 x 107%, & =50 mm-mrad initial waterbag distribution
rp =40 mm Emittance Evolution
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At high aperture fill factor t

ne density becomes nonuniform

with distorted phase-space due to nonlinear focusing
At 100 periods
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Summary

+ Optimization of “stacked-washer” Einzel lens systems carried out:
* Simple, accurate linear applied field model derived
* Needed washer radial extents, radiusing for breakdown suppression, and
applied field nonlinearities quantified
* Linear particle/envelope model derived and focusing geometry optimized
* Simple transport scaling derived shows high perveance transport possible

+ Warp PIC simulations verify that high fill factor and high perveance

transport preserves beam quality
e No emittance growth over long transport in spite of high nonlinear fields

+ Technology attractive for plethora of near-injector applications
* Simple and economical
* Optimization clarifies range of max voltage/focusing can work
* No magnetic field to penetrate source (emittance penalty)

Extensive article detailing work now mostly completed for submission to PRSTAB



Selected Topics on Space-Charge Effects in Intense Beams

3) Multipole expansion for realistic modeling of focusing optics



Background/Motivation

Need reliable and fully general 3D description of field from magnets for
high level computer simulations
 Field terms associated with:
- Field Errors: Transverse multipole fields from non-ideal windings
- Misalignments: Coordinate system not on center (offset + tilt)
e Descriptions of fields should be compact and general for ease of use
and reduce to intuitive “standard” forms to aid physics interpretation

Approaches:
1) Direct: Measure 3D field components on grid and import in code
e Very large amount of field data renders impractical
e No information on relationship of design fields relative to error terms

2) Multipole: Use 3D Multipole field expansions
e Already in Warp code and debugged
e Can efficiently extract multipole terms from (minimal) measured field
data on surfaces



General 3D Multipole Expansion: Lund HIF Note 96-10, 1996

Field solutions to the homogenous Maxwell equations:

VxB=0

can be expanded within a cylindrical vacuum region 7 < 7p (Aperture) as:

dbO,v(Z) F2v+1

n=1r=0

n=1r=0

Bz = ibo’y(z
1
DI

n=1v=0

dwn

+) ) bau(2)
==2_2 bnu(2)

V-B=0
= 1
B’”__;Q(Hl) dz

[1 + 2%] r T2 cos[nd + v (2)],

r T2 sinnd 4+ ¥ (2)],

Z Z i dbn a r"T2Y cos[nd + 1, (2)]

n=1vr=0

b (2)r™" T2 sin[nd + ¥, (2)],




B, =, By = — Z Z bn,y(z)r”_Hz” sin[nd + ¥, (2)], B, =---

n=1 vr=0
n=0,1,23,--- Azimuthal Harmonic Number
v=20,1,2,3, - Radial Index ... necessary in 3D ....

b (2) Multipole Amplitude Function (positive or negative)
Y (2) Multipole Phase Function

Due to transverse symmetries:
* v =0 amplitude functions are called fundamental = amplitudes

* p > ( amplitude functions are called pseudomultipole amplitudes

Pseudomultipole amplitudes are related to
fundamental amplitudes and phase functions by:

b (2) 0310 (2) = o S {bo(2) cos ()
b 2) st (2) = o S (o) sin ()

+ Set of fundamental amplitudes and phases {6n,0(2), ¥»(2)} specify field




Simplification for systems with axially invariant

transverse symmetry
Systems with transverse symmetries which do not vary in z have:

Y, (2) = const

In this case the multipole expansions reduce to the simpler form:

> 1 dby,(2) ,
BT — _ ) r+1
I; ow+1) dz

0 0 2
+ Z Z b, (2) [1 + %] P cos[ng + 1y,

n=1v=0

= — f: f: bn,y(z)r”_1+2” sin[nd + y],

n=1vr=0

Bz _ Z%bo,u( 21/ n Z Z :Ldbn U n—|—21/ COS[’I’L@ + wn]a

n=1v=0

(—=1)*n! d*

bn
4vvl(n +v)! dz?v 0(z)

bn.(2) =




For harmonic number n > 1 and radial index v, the transverse field

components produced vary as
Radial: Bl ~ by, (2)r" T2
Azimuthal: B ~ by, (2) cos[nb + 1, (2)]

A special case, for an 1deal solenoid, the expansion can be
further reduced to the familiar form:

Linear
Terms
= (-1 gt r\2v+l 1dBo(2)
Br = _;) vi(v + 1)1 0z2v+1 Beo(z) (5) - a4 i
B = (=1)¥ 9% 2V B
b _,; 2 g ) (2) = Bal?)

B.o(z) = B.(r =0,2) = by o(z2)

NonLinear
Terms

*n=0, »=0,1,2,---

terms describe an ideal, axisymmetric solenoid



Axially averaged multipole functions and relation to
2D transverse multipole expansions

Define an axial average:

1 o0

» ( aritrary, but usually set to effective field length of magnet

Average of 3D expansion gives:

B, = Z bn,0 cos|nf + wn]rn_l Z o cos[nd + wn]
n=1 — n=1
By = — Z bp,0 sin|nf + wn]rn_l By = — Z msin[’nﬂ + %]r”_l
n=1 n=1
B, =boyo

* Reduction of transverse components always carried out by defining
and effective amplitude and phase
- Exactly as expressed for axially invariant transverse symmetry



Transverse averaged field components are the 2D fields:
+ Satisty 2D transverse Maxwell Equations

0Bg(z,y)  0By(r,y)  0Bu(z,y) 9By(z,y)

ox oy oy ox
These are the Cauchy-Riemann conditions for a complex field
B* =B, —iB, i=v_1
to be an anlytical function of the complex coordinate
z=x+ 1y
Thus the complex field 1s expandable in a Laurent series as
B =B, B, =3 b,""
n=1

and the 2D complex multipole coefficients 0, can be identified in terms of
the 3D multipole functions as:

b, = mew_”




The complex 2D multipole coefficients are typically expanded as

B,, = Normal multipole component

A,, = Skew multipole component

Field components produced have projections

Cartesian projections: B, —iB, = (A, — iB,)(z + iy)" !

Index | Name Normal (A, = 0) Skew (B,, = 0)

n B_x/ By, B_y/ By, B_a:/ An B_y/ An

1 Dipole 0 1 1 0

2 Quadrupole | y x x —y

3 Sextupole 2xy x? — 92 2 — y? —2xy

4 Octupole 3x2y — 3 3 — 3xy? 23 — 3xy? —3z%y + 3
5 Decapole A3y — dxy® 2t — 622y + y* ot —62%y? +y*  —dady + day?
Cylindrical projections: B, —iBy = (A, — iB,)r" e’

Index | Name Normal (A, = 0) Skew (B,, = 0)

1 Dipole sin(6) cos(0) cos(0) — sin(0)

2 Quadrupole | 7sin(20) r cos(20) r cos(26) —rsin(26)
3 Sextupole r? sin(30) 72 cos(30) 2 cos(30) —r? sin(36)
4 Octupole 3 sin(40) 3 cos(40) 3 cos(40) —7r3 sin(46)
5 Decapole r4 sin(50) rt cos(50) rt cos(50) —rt sin(56)




Calculation of 3D Multipole Coetficients
From Measured Field Data

Follow Venturini and Dragt, Nuc. Inst. Meth. A 387-392, 427 (1999) and

calculate the scalar potential on a cylindrical surface and relate to field
measurements on the surface to identify the 3D multipole functions
+ Intuitive: electrostatic equivalent problem set by boundary data in a
source free region
+ Procedure formulated not use derivatives of field data
- Integration (Fourier Series and Transforms)
employed which should smooth noisy data
+ General while promising good accuracy
- Field errors sampled on larger radial surface easier to resolve
* Big savings in measurement data: Example NDCX-II Solenoids

: z-dir erp-dir
| Field (0 6r;) P fr'PP L N
Data Pointssp = 3 X X (2—) ~ 1.2 Million

/ de dx
Data Pointsgyface = 1 X (L 6ro) (47 max) ~ 10.4 k Factor 115
dz Reduction!

dz = dxr = 2 mm nmaleo




Scalar Magnetic Potential:

.0 4l 0 e,

=—> ¥ / dz bo (%)
r=0 -

o0 o0 1
= 3D buu()r" T cos[nf + 1, (2)] + const

n=1vr=0

Expand Transverse 3D Field Components:
Fourier series of periodic azimuthal dependance on a surface at r = R

By(R,0,z) = [Bf,(R,2)cos(nf) + B, (R, ) sin(nb)]

n=0

Z B§ (R, z) cos(nf) + Bj (R, z) sin(nd)]

n

rn(R, z) = Fourier Coefficient
harmonic n, cosine-like function




Radial Field Measurements on Surface:
+ Give all harmonic components
- Solenoidal amplitudes and
transverse multipole amplitudes and phases

n = 0 terms
i > dk kK > dz .
bo..(2) = esz/ e " B¢ (R, %
o) = gy | v | e B )
n > 0 terms
. o0 n—14+2v
b)) = e [ e
’ 2nt2vplin + v)! J_ o271 I (kR)

© di
« e~ %% [B° (R,%) —iB®, (R,?
| e B (R 2) — B2 2)]

I,(z) = Modified Bessel Function, 1st Kind, order n




Azimuthal Field Measurements:
+ Give only transverse multipole amplitudes and phases

- Redundant data for azimuthal field can be used for consistency/accuracy checks

n > (0 terms

o0 n—+2v
by o (2)e¥n ) = — R / dk_ K"V ke

o 2yl + ) | /on In(ER)

< dz 13
x e~ "2 [BS (R,%)+iBS, (R, 3
| e By (R )+ 155, (R )

I,(z) = Modified Bessel Function, 1st Kind, order n

Axial Field Measurements on-axis:
+ Gives information on n = 0 solenoidal field components only
- More accurate due to structure of formulas forn =0

n = 0 terms
bojo(Z) — BZ()(Z) — BZ(T = O,Z)
1 > dk . < di ..
b (2) = —kQVG’LkZ/ e—zszz 3
0, ( ) 4V(V!)2 /;OO o _OO\/% 0( )




Summary

+ A general 3D multipole expansion has been developed
* Applicable to all magnet types: solenoid, dipole, quadrupole, .....
e Implemented/benchmarked in the WARP code for realistic modeling
* Symmetries of errors clarified by expansion terms aid physics interpretation

+ Formulas derived to efficiently and accurately extract multipole expansion
terms from measured field data on surfaces
e Surface measurements of radial field rather than volumetric measurements of
3 field components for big reductions of measurements for realistic fields
e Promises better accuracy: relevant errors larger to resolve on outer surface

+ Applicable to NGLS/APEX for realistic modeling
 Including centroid/alignment errors of solenoid inducing corkscrew modes
which may reduce effective beam quality
e Lab notes available fully detail formulation



Selected Topics on Space-Charge Effects in Intense Beams

4) Space-Charge induced transport limits 1n
quadrupole focusing channels



Review: SBTE experiment at LBNL on quadrupole transport limits
Higher order Vlasov instability with strong emittance growth/particle
losses observed 1n broad parametric region below envelope band

[FODO Lattice; M.G. Tiefenback, Ph.D Thesis, UC Berkeley (1986)]
Min —p 1 O ..................................

m O 100% core
0.8F | *< 95%core
O
5 Stabl
%‘ §0 o 0.6} able
1 S T 5
§ % > 04 70 =3 hareloipe Evelope Instability
o Instability Review:
> Lund Bukh,
Max » OOL—eo ... . OSSR ... PRSTAB 2004

0 30 60 90 120 150 180
oo (degrees)
Applied Focus Strength
Results summarized by og < 85° for strong space-charge
+ Reliably applied design criterion in the lab
+ Limited theory understanding for 20+ years; Haber, Laslett simulations supported

Theory and simulation publications over-viewed here explain mechanism
Lund. Chawla, NIMA 2006 Lund, Barnard, Bukh, Chawla, Chilton, NIMA 2007



Parametric Warp PIC simulations of smooth, initially matched distributions have
little emittance evolution outside of instability regions experimentally observed

Example: initial thermal equilibrium distribution:  Lund, Kikuchi, Davidson

* Density along x- and y-axes for 5 periods PRSTAB 2009
+ Emittance growth very small -- 5 period initial transient shown
Superimposed Density Snapshots | Emittance Evolution
O
0‘0:450 0'/0'0_02 0'0245 0'/0'0—02
1.5: ....... AR ] NS AR 0'/0'0 1.010 [ T T T 7 1%
.": 1af f"'""" E————— Bk /’f T — “"’\ 180 ez/ex(s = 0)
é) 5 .::::: O 0'0 _
3] : | \ g 5 Looo T
SSEL T N =L R 5 1%
10 x(m[.Jm) 1 0 }'(rim) 1 % 0'99(0 2 4 5
o9 = T0° o/og =0.2 g 00 = 70° o0/og =0.2
. A | 5 119
o [ X~dXIS [ y-ax1s IR -
2 /,»,m »W E M i1 0 oo 130 E 5
3 N L O . : ]
D” . I||| — ; §'§p Il\' E _ 2; g’%p , 0.995 [ ]
Y AT Y AT Ve V1%
-10 x(m[.Jm) 1 -13 y("c:m) 10 ) O 2 4 5

X y Lattice Periods



Warp simulations find broad instability region to the left of the envelope
band -- features relatively insensitive to the form of the
(non-singular) matched initial distribution

* Where unstable, growth becomes larger and faster with increasing o

Example Parameters: oy = 110°, 0/09 = 0.2 (L, = 0.5 m, n = 0.5)

1

o | o/og
g J
o 10 :
O J
5 0 oo 180
&
S
£
nd|
)
& T
& “Initial Distribution:
> . .
< Semi—Gaussian
g Waterbag
~

20 30 40

Lattice Periods



Self-consistent Poincare plots generated using Warp PIC simulations for
cases of instability show large oscillation amplitude particles have halo-
like resonant structure -- features insensitive to the initial distribution

Lattice period Poincare strobe F
0'0:1100 0'/0'020.2 |

Semi-Gaussian Thermal Equilibrium
x—x' Poincare Plot: s/l = [ 2.25,19 25], strobe = 1.00 XX’ Il:’oincarel Plot: Sﬂl—p = [2-2|5s19-2?],| Str0b9=l 1.00
L T o O T O T A I S A S B R K ' ' T AL '
- e, e R z i _
z 2= - = ]
< E N : e E .
SR - s~ ]
2 ; : - 2 = -
8 | - . S 0 _
- 0— — Q =
v - - - v - A
= : - = i
_2_: :_ ]
UL r T e S | . | T
-2 1 0 1 2 5 0 5
Scaled x Scaled x

+ Particles evolving along x-axis particles accumulated to generate clearer picture
- Including off axis particles does not change basic conclusions



Extensive Warp PIC simulations carried out to better understand the

parametric region of strong emittance growth

+ Simulations advanced 6 undepressed betatron periods

- Enough to resolve transition boundary: transition growth can be larger if run longer

+ Strong growth regions of initial distributions all similar (threshold can vary)

- Irregular grid contouring with ~200 simulations (dots) thoroughly probe instabilities

1.0

mitial semi-Gaussian

0.8

0.6

+ TInitial thermal/Gaussian = o

0.2

almost 1dentical 00

1
0.8} 1
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> Exp[0.00]
= Bxp[0.31]
> Bxp[0.61]
> Bxp[0.92]
> Bxp[1.22]
= Bxp[1.53]
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> Bxp[2.44]
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Core-Particle Model --- Envelope flutter at high focus strength and space-charge
nonlinear forces drive strong resonances for particles evolving outside beam edge

Envelope (matched or mismatched) with actual flutter

L
1.41 E:/ p@rx(s) go O'/O'()
12| o Lp 45° 020
1.0/ n=05 L,=05m 80° 0.26
08! O=5x10""* 110° 0.32

06! Ex = €y = H0 mm-mrad

00 02 04 0.6 0.8 1.0

Lattice Period, s/L, 2.0 . :
Beam Edge
. . olc,= 0.4
Nonlinear force transition o L5 ;
O :
inside/outside uniform beam large 3 olcy =06
1.0 =
for strong space-charge 3 o/0, =08
< ic,=1.0
e [llustrated for round beam P -
0.0
0.0 0.3 1.0 1.5 2.0

Radius, rfrb



Core-particle simulations: Poincare plots illustrate resonances associated with
higher-order halo production near the beam edge for FODO quadrupole transport

+ High order resonances near the core are strongly expressed

+ Resonances stronger for higher 0o and stronger space-charge

+ Can overlap and break-up (strong chaotic transition) allowing particles launched
near the core to rapidly increase in oscillation amplitude

Lattice Period Poincare Strobe, particles launched [1.1,1.2] times core radius

Stable Unstable

Initial

gg = 950, O'/O'O = 0.67  Load og = 11007 0‘/0‘0 — 0.1

22 —ufR

Range
_ /N

1.3 %?T:"o
1} ¥
. 03%1310
w = 05| = X TN
o P = %-: ) ' : '
=57 0 g 0
S = __
N8 _ 0 bl
1} e il
15 — - 20 |7 bl
1.5 -1 -0.5 0 0.5 1 1.5 -3 -2
/Ty

Scaled x 1.25



Core-particle simulations: Poincare phase-space plots illustrate stability regions
where near edge particles grow in oscillation amplitude: launch [1.1,1.2]x core

C (stable): gy = 95°, /oy = 0.67

1.0 . :
Stable ) 13
0.8} .
-~ = o5}
0.6 Stable S
£ BT ¢
b 0.4} Envelope § "'EQH _05|
Instability o
02+ 1l
A 15 T
0.0 b - ST 5
0 30 60 90 120 150 180 /5 N N l b
70 (degrees) Initial Scaled x 1.23
A (stable) 0 = 60 : 0/(70 =0.1 Load B (unStable) 00 = 110 , 0/og =0.1
/Range 22
3.5 " ? e '
s 8 o emosmemESESEmasEzecas. -"*' " ~><:—\a -
= 3 % S 3 3 0
2 =
S % 8‘%%
2 v & -10¢
-20|

Scaled x , Scaled x 3.2



Contours of max particle amplitudes in core particle model suggest
stability regions consistent with self-consistent simulations and experiment

Max amplitudes achieved for particles launched [1.05,1.1] times the core radius:
- Variation with small changes in launch position change picture little

1o S 1.0
| 12 Band
a%‘ . 08 | Edges
N A : v, | Tiefenback's
I ////‘ 0 6 | O_O — 850 \_ ) : f :-4_ e _ . | curve flt to
R e . sl e N\ ‘ experimental
PIC Results < \ e stability
04 | E 3 :E",ﬂ boundary
P ; 767
1 8
Threshold <\ ' S T L Amplitud
| 15 arge Amplitude
Growth 2 0 N
0.2 B 17 Growth Blue
Black Contours: d 1]
12.13. 14 ™) T Contours:
I 0.0 . - . . . 1.5,2.0,25, ..., 10
60 380 100 120 140

oo (degrees)
Note: consistent with PIC results, instability well above envelope band not found



Discussion: Higher order space-charge stability limits in periodic
quadrupole transport

High-order space-charge related emittance growth have long been observed in
intense beam transport in quadrupole focusing channels with ¢ 2 85°

+ SBTE Experiment at LBNL [M.G. Tiefenback, Ph.D Thesis, UC Berkeley (1986)]

+ Original simulations by Haber, Laslett and parametric results by Lund, Chawla

A core-particle model developed show these space-charge transport limits result
from a strong (non-tenuous) halo-like mechanism:
+ Space-Charge and Envelope Flutter driven

+ Results in large oscillation amplitude growth -- strongly chaotic resonance chain
which limits at large amplitude rapidly increases oscillations of particles just
outside of the beam edge

+ Not weak: many particles participate -- Lack of core equilibrium provides pump of
significant numbers of particles evolving sufficiently outside the beam edge

+ Strong statistical emittance growth and lost particles (with aperture)

More details in comprehensive publications:
Lund, Chawla, NIMA 561, 203 (2006)
Lund, Barnard, Bukh, Chawla, Chilton, NIMA 577, 173 (2007)
Lund, Kikuchi, Davidson, PRSTAB 12, 114801 (2009)



Selected Topics on Space-Charge Effects in Intense Beams

5) Nonlinear focusing channel for stable beam transport and
possible application to NGLS/APEX



Significant halo/distribution distortion observed on
APEX 1njector for NGLS: Papadopoulous CBP Nov. Talk

_ﬂjﬂ H

@ Berkeley Lab

NGLS Injector Layout
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Basic Idea: Adjust applied focusing potential for

linear beam dynamics with a stable distribution
Usual 2D Transverse Hamiltonian for continuous Linear Focusing:

1 ,9 1
H, = -x|" 4+ Zk3,x7 +
9 L T gnROTL my; ,Bb c?
) ) )
Kinetic Applied Self-Field: Generally nonlinear

Linear Focus

k%o = const : approx avg focus of periodic lattice

Use a nonlinear applied focus potential V for overall linear dynamics

I, 9
H| = -x %
1 9 1 ‘|—\ =+ m’Yb,BbCZ ’
1,9 1

kéo = const : linear dynamics all particles
Procedure can be carried out with a manifestly stable thermal equilibrium
beam distribution: Lund, submitted to NIMA, Dec. 2012



2D Vlasov-Poisson System for an unbunched beam

The sheet beam evolves in x-x' phase-space according to Vlasov's equation:

0, 0 9 OH 9\,
ds = ox| 0x, 0Ox, 0%, B

with

q
my, By c?

and coupling to the field specified by Poisson's equation

o N 0? __a,
ox? 8y2 €0




Apply procedure to a thermal beam distribution

Analysis of the rest frame transformation shows that the 2D Maxwell-
Boltzmann distribution (lab frame temperature definition) 1s:
no = n(x, = 0)
n
fi(HL) = % exp (—[H ) 1
@ 3 7= const

* Temperature uniform spatially
) dex/ 58,2fJ_ B m")/ngCQ
&Pz f B
* Density nonuniform: solve Poisson equation to calculate
- Structure depends on applied focus V and space-charge intensity
* Manifestly stable by distribution concavity: Fowler, Davidson

df, (H)) <0 Sufficient condition

dH, — for stability
+ Parameters: eliminate theory parameters to accelerator relevant and

express in terms of a uniform density rms equivalent KV beam.
no Q) Perveance } o /(70 c [O, 1] Tune deprejssion
16 ——  Erms,z I'MS X-emittance of rms equivalent
k 3 Oy Density profile extent (sigma) beam

= T = const

T:,j = fybmﬁgc




Review: for linear focusing stable beam has highly nonlinear dynamics

Lund, Kikuchi, Davidson, PRSTAB 2009
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Nonlinear Focusing

Density Profile always Gaussian:
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Properties of Nonlinear Focusing Potential

Focus Strength relatlve to llnear focus strength for rms equivalent beam

Multipole structure of nonlinear focus V = Z Vi

Apphed Focus Term V./ Vi
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Discussion on application to NGLS/APEX

+ Nonlinear focus could maintain distribution force balance from Gaussian
injection with strong space-charge to suppress generation of halo
- Provides extra/better “knob” to optimize better than just linear focus
- Nonlinear fields small and can be rapidly decreased with acceleration to
transition to a linear lattice as space-charge becomes weak
- Results apply to “chopped” Gaussian also
(field outside beam arb though)
+ More work necessary to evaluate if practical
- Real beam periodic focused and very short axially
- Need to characterize effective nonlinear focus strength of AG multipoles
+ Possible Path to evaluate:
1) Simulate idealized (fictitious) field superimposed on realistic (present)
APEX lattice model to see if improvements can be realized
2) Design nonlinear focus to approximate 1dealized nonlinear focus force
Electric Multipole? Magnetic Multipole?
3) Simulate realistic lattice model to evaluate whether significant gains
realizable and implement 1f promising



Conclusions
Topics Overviewed:

1) US Particle Accelerator School on “Beam Physics with Intense Space-Charge”
2) Theory and numerical simulations on optimal Einzel lens transport

3) Multipole expansion for realistic modeling of focusing optics

4) Space-Charge induced transport limits in quadrupole focusing channels

5) Nonlinear focusing channel for stable beam transport and possible application to

NGLS/APEX

Additional topics not covered:

 Lattice design

e Beam steering and control

e Equilibrium beam structure

* Debye screening

* Envelope modes

e Collective instabilities

e Beam Halo: transverse and longitudinal
 Dispersion effects with space-charge
e Bunch compression in rings

e Diagnostic development

e Low dimensional models

e Numerical Simulations

* Warp code for intense beam modeling

* Modeling transport experiments

e Distribution Loading

e Bunch end blowoff

 Effective length of focusing optics

e Magnetic optics: Permanent and
superconducting

e Electric optics: Dipoles, Quadrupoles

e Magnetic pinch focusing

e Paul Trap modeling of long-path length
beam transport
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