

Production of Coherent Synchrotron Radiation at ANKA Using Low-momentum-compaction Lattices

Marit Klein July 2011

LABORATORY FOR APPLICATIONS OF COHERENT SYNCHROTRON RADIATION

Karlsruhe Institute of Technology

Karlsruhe Institute of Technology

N. Hiller, A. Hofmann, J.C. Heip, E. Huttel, V. Judin, B. Kehrer,

S. Marsching, S. Naknaimueang, Y.-L. Mathis, A.-S. Müller,

N. Smale, M. Süpfle

Ruhr Universität Bochum

E. Bründermann

Cornell University

K. Sonnad

Overview

- Introduction
 - The ANKA storage ring
 - Low-alpha mode and CSR production
 - Stable vs. bursting emission
- Measurements with a hot electron bolometer (HEB)
- Measurements with a streak camera
- Spectral measurements
- Modeling the low-alpha mode with the Accelerator Toolbox

The ANKA storage ring

ANKA - Parameters

- Beamlines:
- 13 in operation
- 4 in construction / commissioning

- Normal operation:
- Energy 2.5 GeV
- Current 120-200 mA
- Multi-bunch (3 trains with 30ish bunches each)
- Natural bunch length $\sigma_{z,0} \approx 13 \text{ mm}$
- Low-alpha mode:
- Coherent THz radiation
- Energy 1.3 GeV
- Current ≈ 0.1 70 mA
- Single- or multi-bunch
- Natural bunch length $\sigma_{z,0} \approx 0.3 4.5 \text{ mm}$

Coherent synchrotron radiation (CSR)

- Short bunches emit usable coherent synchrotron radiation
- Enormous increase in power in comparison to incoherent emission
- Dedicated optics with negative dispersion in the long and short straight sections for flexible bunch length tuning
 - Low-α_c optics

- Coherent radiation is produced in two regimes:
 - low power stable emission
 - high power radiation bursts

The low-alpha mode

Low-alpha user operation:12 days/year

Operation procedure:

- Fill at 0.5 GeV
- Ramp energy (regular optics) to 1.3 GeV
- Low-α_c "squeeze"
 - change quadrupoles & sextupoles
 - orbit correction between steps

- Observed α_c range as derived from Q_s measurements:
 - ▶ from 8.5 10⁻³ to 2.4 10⁻⁴

CSR for Users

Synchrotron (Edge) Radiation at IR1

The THz Beam Profile

incoherent, A_{max} ≈ 0.1 mV

coherent, A_{max} ≈ 2.9 mV

Setup of beam line and detector:

- measurement behind a Si or CaF2 vacuum window
- room temperature pneumatic (Golay) detector
- detector and aperture are mounted on a x-y imaging stage and scanned vs distance and lateral position relative to the vacuum window

The bursting stable threshold

- Hight electron densities lead to microbunching instability
- Measured bursting stable threshold with Si bolometer
- Good agreement with theoretical prediction*:

⁺G. Stupakov and S. Heifets, Phys. Rev. ST Accel. Beams 5, 054402 (2002)

THz Signal and Beam Current

- The Hot Electron Bolometer (HEB) detects the THz signal of individual bunches
- Relative bunch currents from pickup

THz Signal and Beam Current

- A comparison shows a dependency of CSR on the current of the leading bunch
- Investigations with tailor made filling pattern

CSR of Adjacent Bunches

Correlated bursting?

Effect is under systematic investigation

Radiation Bursts

decreasing current

Bursting behavior dependent on electron density

Streak Camera

- Double-sweep synchroscan streak camera from Hamamatsu
- Optical port at IR beamline, now new dedicated beam port
- Recording of sequences of 500 consecutive images
- Correct for oscillations

Bunch length

- Low currents: Converging to the zero current bunch length
- Above bursting stable threshold: Turbulent bunch lengthening

Measured and Expected Spectra

- CSR spectra are proportional to Fourier transform of the electron distribution
- Spectral measurements with a Michelson Interferometer
- Expectation from streak cam. measurement below cutoff
- Explanation: substructure or stronger deformation

Single shot measurement needed

Coherent Radiation

Comparison of single and multi-bunch fillings

Gain Curves

Comparison of single and multi-bunch fillings

Observations

- Multi bunch gain curve seems to lie significantly higher than single bunch curve for similar single bunch current for longer bunches
- For shorter bunches, the curves are closer

Hypothesis: effects from the ring impedance are more significant if the CSR effect is less pronounced

Modeling the low-alpha mode with AT

 $0.46 \cdot 10^{-3}$

	measured f_s	model α_0
A	$30.7~\mathrm{kHz}$	$8.5 \cdot 10^{-3}$
В	$29.2~\mathrm{kHz}$	$7.8 \cdot 10^{-3}$
\mathbf{C}	$24.2~\mathrm{kHz}$	$5.7 \cdot 10^{-3}$
D	$8.5~\mathrm{kHz}$	$0.74 \cdot 10^{-3}$

5 different low-alpha optics modeled

Measurements for each model:

- Tunes: Q_x, Q_y, Q_s
- Orbit response matrix

6.7 kHz

- Dispersion
- Chromaticity

 \mathbf{E}

LOCO fits and Chroma fits

- Magnet strength calculated from currents settings
- Correction of quadrupole strength:
 - LOCO fit of response matrices and dispersions
- Additional quadrupole components
 - fit of tunes and chromaticity curve shapes
- Correction of sextupole strength
 - fit of chromaticity values

Optics functions

Tunes

 \times A

Synchrotron tune:

- approximate the measurements
- no impact seen in AT of higher order terms on synchrotron tune

Betatron tunes:

- approximate the measurements
- best agreement for lowest α
- largest difference in the horizontal betatron tune
 - emphasis in modeling on sychrotron tune

Higher order alpha

$$f_s(f_{RF}) \to \alpha_p(dp/p) = \alpha_p(\delta)$$

$$\alpha_p = \frac{dL/L}{dp/p}$$

$$\alpha_c = \frac{\Delta L/L_0}{\Delta p/p_0} \quad \Longrightarrow \quad$$

$$\alpha_p = \frac{dL/L}{dp/p}$$
 $\alpha_c = \frac{\Delta L/L_0}{\Delta p/p_0}$ \Longrightarrow $\alpha_p = \frac{1+\delta}{1+\alpha_c\delta} \frac{d(\alpha_c\delta)}{d(\delta)}$

$$\Rightarrow \alpha_c = \alpha_0 + \alpha_1 \delta + \alpha_2 \delta^2 + \alpha_3 \delta^3 + \dots$$

$$\alpha_0 = +(6.28 \pm 0.0014) \cdot 10^{-3}$$

$$\alpha_1 = -(99 \pm 6) \cdot 10^{-3}$$

$$\alpha_0 = +(0.447 \pm 0.004) \cdot 10^{-3}$$

$$\alpha_1 = -(20 \pm 1) \cdot 10^{-3}$$

$$\alpha_2 = -(2,710 \pm 300) \cdot 10^{-3}$$

$$\alpha_3 = -(190,000 \pm 90,000) \cdot 10^{-3}$$

Longitudinal phase space

- Low α₀ → higher order terms have to be considered
- Additional fixpoints at: $\frac{\Delta p}{p_{fix}} \approx \frac{\alpha_0}{\alpha_1} = -0.036$
- Measurement: $\frac{\alpha_0}{\alpha_1} = -0.023 \pm 0.001$

Dynamic aperture

DA for different chromticities

- Small chromaticities enlarge dynamic aperture
- Low α₀ optics are more sensitive to chromaticity changes

Summary

- Regular low-alpha user operation
- Characterized the properties of the CSR
 - calculated and observed bursting/stable threshold
 - investigated radiation behavior with HEB
- Bunch shape and length measurements with streak camera
- Spectral measurements, comparison multi and single bunch
- Beam based modeling of the low-alpha mode
 - higher order momentum compaction
 - second stable fixpoints in long. phase space
 - dynamic aperture investigation

Outlook

- Simulations of microbunching instability and bursting behavior with a Vlasov-Solver
 - Bunch to bunch interaction?

- HEB leading bunch analysis, bursting triggering with additional wake fields
- Single shot measurements of electron distribution with electrooptical sampling

