Variation on the Theme of Madey’s Theorem

Kwang-Je Kim
ANL and The U of Chicago

December, 2013
LBNL and SLAC
FEL Oscillator using a high Q cavity is a low gain device

- Low gain oscillator output has characteristics complementary to the high-gain single pass FEL
 - Stability, coherence, high rep rate, gentler pulses
The complement of XFELs will not be complete without an x-ray FEL oscillator

- Bragg crystal as high reflectivity mirror was suggested at 1983 BNL WS
- Highly stable, fully coherent, ps pulses with ultra-high spectral purity (10^-7) with MHz rep rate—“a real laser”
- XFELO output pulses are copies of the same circulating intra-cavity pulse → possibility to produce x-ray spectral combs, allowing experimental x-ray quantum optics for fundamental physics
Madey’s two theorems (1979) are of fundamental importance in a low gain FEL

- **First Theorem:**
 \[
 \langle (\Delta \gamma)^2 \rangle = \frac{2\pi^2}{m^2 c \omega^2} E_0^2 \left. \frac{d^3 w_s}{d^2 \phi_\perp d\omega} \right|_{\phi_\perp=0}
 \]

- **Second Theorem:**
 \[
 \langle \Delta \gamma \rangle = \frac{1}{2} \left. \frac{\partial}{\partial \gamma_0} \langle (\Delta \gamma)^2 \rangle \right|_{\phi_\perp=0}
 \]

- **Gain:**
 \[
 g = - \frac{j}{q} \left. \frac{(2\pi)^3}{m \omega^2} \frac{\partial}{\partial \gamma} \frac{d^3 w_s}{d \omega d^2 \phi_\perp} \right|_{\phi_\perp=0}
 \]

- **Amplitude of coherent radiation:**
 \[
 \frac{E_0}{d^2 \phi_\perp d\omega}
 \]

- **Angular-spectral density of spontaneous emission**
 \[
 \frac{d^3 w_s}{d^2 \phi_\perp d\omega}
 \]
Variation on the theme of Madey’s theorem

- FEL gain from quantum mechanical view
- Derivation of Madey theorems
 - Mainly from electron dynamics (the most familiar)
 - Mainly from radiation process (the most intriguing)
 - Maxwell-klimontovich equations, to include 3D effects
Low gain FEL from quantum mechanics (J.M.J. Madey, 1971)

- Transition amplitudes for emission and absorption

\[[a, a^+] = 1 \rightarrow \langle n+1|a^+|n \rangle = \sqrt{n+1}; \quad \langle n-1|a|n \rangle = \sqrt{n} \]

\[\langle n+1; p'_e | (aJ^+ + a^+J) | n; p_e \rangle = \langle n+1|a^+|n \rangle \langle p'_e |J| p_e \rangle = \sqrt{n+1}A_e \]

\[\langle n-1; p'_a | (aJ^+ + a^+J) | n; p_a \rangle = \sqrt{n}A_a; \quad A_a = \langle p'_a | J^+ | p_a \rangle \]
Electron-photon interaction in the presence of external potential

- **2-momenta:**
 \[p = \left(E, E - \frac{m^2}{2E} \right), \quad k = (\omega, \omega), \quad q = (0, -Q), \quad \bar{q} = (0, Q) \]

- **Conservation:**
 \[p_e + \hbar q = \hbar k + p'_e, \quad p_a + \hbar \bar{q} = \hbar k + p'_a \]

- **Emission case:**
 \[E_e = E'_e + \hbar \omega, \quad E_e - \frac{m^2}{2E_e} - Q = E'_e - \frac{m^2}{2E'_e} + \hbar \omega \]

 \[\therefore \omega = \frac{2E_e^2}{m^2} Q \left[1 + \frac{\hbar \omega}{E_e} \right]; \quad Q = \frac{k_U}{(1 + K^2 / 2)} \]

- **Quantum corrections to classical resonance condition:**
 \[E_e \approx E_c + \hbar \omega_c / 2; \quad E_a \approx E_c - \hbar \omega_c / 2 \]
Gain

The net energy production from the emission and absorption processes

\[
\frac{dW}{d\omega} = N_e \hbar \omega \left[(n + 1) \left(\Gamma_e \right) - n \Gamma_a \right] = N_e \hbar \omega \left[n \left(\Gamma_e - \Gamma_a \right) + \Gamma_e \right]
\]

\[
\Gamma_e = \Gamma(E_c + \hbar \omega_c / 2), \quad \Gamma_a = \Gamma(E_c - \hbar \omega_c / 2)
\]

\[
\frac{dW}{d\omega} = N_e n(\hbar \omega)^2 \frac{d}{dE_c} \Gamma
\]

The classical gain formula when \(\hbar \omega = E \)

\[
g = -\frac{j \left(2\pi \right)^3}{q m \omega^2} \frac{\partial}{\partial \gamma} \frac{d^3 \omega_s}{d \omega d^2 \phi_{\perp}} \bigg|_{\phi_{\perp}=0}
\]
Derivation mainly from electron dynamics

(Madey, 1979; W. Colson, 1977)

- **H** (the electron motion in a static radiation device) \(\gg \Delta H\) (EM field-electron interaction)

- Solve to second order in \(\Delta H\) compute electron energy change \(<\Delta \gamma>\) and the spread \(<\Delta \gamma^2>\)
 - Explicitly solve the pendulum equation if undulator or do the Hamiltonian perturbation theory for a general radiation device

→ The second theorem

→ The first theorem by invoking from conservation of electron and EM energy

- Since Madey 1979, the second theorem has been proven to increasing generality by N. Kroll, S. Krinsky-J.M. Wang-P. Luchini, and V.N. Litvinenko-N.A. Vinokurov
Derivation mainly from EM field point of view (Max Zolotorev, 1995?)

- Electrons with energy $mc^2\gamma_j$ interacting with the laser field E_0 changing its energy and producing spontaneous emission field ε

- Make us of three basic principles:
 - EM field amplitudes add linearly
 - EM energy is quadratic in field amplitude
 - Conservation of total energy (EM field and electrons)
Derivation (KJK after Max)

- **Incident laser field (assumed to be plane wave):**
 \[
 E(x_\perp, z_I, t) = E_L(z_I, t) = E_0 \cos \omega(t - z_I / c)
 \]

- **Outgoing laser + spontaneous emission:**
 \[
 E(x_\perp, z_{II}, t) = E_0 \cos \omega(t - z_{II} / c) + \sum_j \varepsilon(x_\perp, z_{II}, t - t_j; \gamma_j)
 \]

- **Energy associated with the spontaneous emission:**
 \[
 \bar{\gamma}_j = \gamma_j + \xi \Delta \gamma_j; \quad \Delta \gamma_j = \gamma'_j - \gamma_j; \quad 0 \leq \xi \leq 1
 \]

- **\(\Delta \gamma\) is small:**
 \[
 \varepsilon(x_\perp, z_{II}, t - t_j; \gamma_j) = \varepsilon(x_\perp, z_{II}, t - t_j; \gamma_j) + \xi \Delta \gamma_j \frac{\partial}{\partial \gamma_j} \varepsilon(x_\perp, z_{II}, t - t_j; \gamma_j)
 \]

- **Energy conservation**
 \[
 mc^2 \sum_j \Delta \gamma_j = -\frac{c}{4\pi} \int dx_\perp dt \left(E^2(x_\perp, z_{II}, t) - E^2(x_\perp, z_I, t) \right)
 \]
Derivation (ctn’d)

- **Energy conservation:**

 \[
 \Delta \gamma_j = - \frac{E_0}{2\pi mc} \int dx_\perp dt \cos \omega \left(t - z_{II} / c \right) \times \\
 \left(\varepsilon \left(x_\perp, z_{II}, t - t_j; \gamma_j \right) + \xi \sum_j \Delta \gamma_j \frac{\partial}{\partial \gamma_j} \varepsilon \left(x_\perp, z_{II}, t - t_j; \gamma_j \right) \right)
 \]

- **Iterate once:**

 \[
 \Delta \gamma_j = - \frac{E_0}{2\pi mc} \int dx_\perp dt \cos \omega \left(t - z_{II} / c \right) \varepsilon \left(x_\perp, z_{II}, t - t_j; \gamma_j \right) + \\
 \left(\frac{E_0}{2\pi mc} \right)^2 \xi \int dx_\perp ' dt ' \cos \omega \left(t' - z_{II} / c \right) \varepsilon \left(x_\perp ', z_{II}, t' - t_j; \gamma_j \right) \times \\
 \frac{\partial}{\partial \gamma_j} \int dx_\perp dt \cos \omega \left(t - z_{II} / c \right) \varepsilon \left(x_\perp, z_{II}, t - t_j; \gamma_j \right)
 \]
Spontaneous emission field

- **Paraxial, far-field representation:**
 \[\varepsilon(x_\perp, z, t; \gamma) = \frac{1}{(2\pi)^{3/2}} \int d^2\phi_\perp d\omega e^{ik(\phi_\perp g x_\perp + \sqrt{1-\phi_\perp^2} z) - i\omega t} \mathcal{E}(\phi_\perp, \omega; \gamma) \]

- **Angular-spectral density of emitted energy**
 \[\frac{d^3w_s}{d^2\phi_\perp d\omega} = \frac{c}{2\pi k^2} |\mathcal{E}(\phi_\perp, \omega)|^2 \]

- **The interference term (laser-spontaneous emission)**
 \[\int dx_\perp dt \cos \omega(t - z_{II}/c) \varepsilon(x_\perp, z_{II}, t - t_j; \gamma_j) \]
 \[= \frac{(2\pi)^{3/2}}{2k^2} \left(e^{i\omega t_j} \mathcal{E}_0(\omega, \gamma_j) + e^{-i\omega t_j} \mathcal{E}_0^*(\omega, \gamma_j) \right) \]

- **Here**
 \[\mathcal{E}_0(\omega, \gamma) = \mathcal{E}(\phi_\perp = 0, \omega; \gamma) \]
Music finally!

- The iteration equation again:

\[
\Delta \gamma_j = -\frac{E_0 \sqrt{\pi}}{mk^2 \sqrt{2}} \left(e^{i\omega_j} \vartheta_0(\omega, \gamma_j) + c.c \right) +
\]

\[
\xi \left(\frac{E_0 \sqrt{\pi}}{mk^2 \sqrt{2}} \right)^2 \left(e^{i\omega_j} \vartheta_0(\omega, \gamma_j) + c.c \right) \frac{\partial}{\partial \gamma_j} \left(e^{-i\omega_j} \vartheta_0(\omega, \gamma_j) + c.c \right)
\]

- Assume random phase:

\[
\frac{1}{N_e} \sum_j e^{i\omega_j} = 0, \quad \frac{1}{N_e} \sum_{j,k} e^{i\omega(t_j-t_k)} = 1
\]

- \(\langle \Delta \gamma \rangle \) from the second term and \(\langle \Delta \gamma^2 \rangle \) from the square of the first term

- Obtain the second theorem

- Obtain the first theorem if \(\xi = 1 \)

The electron energy associated with the spontaneous emission appears to be the final energy!!
Remarks

Assumptions in this derivation:
- The spontaneous power is negligible compared to the laser power
- The length of the undulator \ll Synchrotron oscillation period of the pendulum motion

Taking into account the electron’s energy change on the radiation process is to take into account the radiation reaction—the run-away problem in radiation reaction is avoided by looking at far field radiation only
Taking 3-D effects into account

- 3D-effects: transversely finite electron beam and radiation field
- Start from the coupled Maxwell-Klimontovich equation derived originally for high-gain analysis
- The equations can be solved straightforwardly in perturbation theory by using “integration over unperturbed trajectory” technique
- The third order term represents the EM field with gain
- In general, it is necessary to diagonalize the complex gain matrix (P. Luchini and S. Solimeno, 1986)
- However,..
3D Madey’s theorem in the absence of transverse focusing (generally a good approximation for a low gain system)

- Introduce a certain “undulator field” $U(\phi; \eta)$
- Form the brightness functions $B_U(x, \phi, \eta)$ and $B_A(x, \phi)$ as the Wigner distribution of the undulator and laser field A.
- 3D Madey’s theorem (F: electron distribution):

$$G = \frac{n_e \chi_1 \chi_2}{\lambda^2} \frac{\int d\eta d\phi dx dy \ B_E(y, \phi) B_U(\eta, x - y, \phi - p) \frac{\partial}{\partial \eta} F(\eta, x, p)}{\int d\phi dy \ B_E(y, \phi)},$$

- Gaussian

$$G = \frac{I}{I_A} \frac{4 \sqrt{2\pi^2} K^2 [JJ]^2 N_u^3 \lambda_1^{3/2} \lambda_u^{1/2}}{(1 + K^2/2)^{3/2}} \left[1 + \sum_{z} \left(z - s \right) \left\{ \sin[2x(z - s)] - i \cos[2x(z - s)] \right\} \right] \left[k_1 L_u \sum_\phi^2 + \frac{L_u}{4k_1 \Sigma_z^2} \right]$$
Gain calculation for XFELO

Figure 5.8: (a) Gain curves as a function of the frequency detuning $x = \pi N_u \Delta \nu$ for (1) $\epsilon_x = \lambda_1/4\pi$, $\sigma_\eta = 1/6N_u$; (2) $\epsilon_x = \lambda_1/4\pi$, $\sigma_\eta = 1/3N_u$; and (3) $\epsilon_x = \lambda_1/2\pi$, $\sigma_\eta = 1/3N_u$. The radiation Rayleigh range Z_R and beam focusing Z_β have been chosen to maximize G, which has been normalized to the maximum gain of (1). (b) Normalized gain, maximized over $\Delta \nu$, plotted as a function of Z_β/L_u and Z_R/L_u for $\epsilon_x = \lambda_1/4\pi$ and $\sigma_\eta = 1/2N_u$.
Madey’s two theorems have both fundamental as well as practical interest

- Illustrate general principles in action, such as energy conservation, EM linearity, Hamiltonian mechanics,..
- Gain calculation of exotic system such as XU
- Gain enhancement with optical klystron or similar schemes invented to narrow the spectrum of high-gain FELs such as iSASE or pSASE

Could there be a high-gain version of Madey’s theorem?

- 1D M-K equations together with the quasi-linear theory (Z. Huang,..)

\[
\langle \hat{\eta}^2 \rangle - \langle \hat{\eta} \rangle^2 \approx 2P_{FEL}(z) / \rho P_{beam}; \quad \hat{\eta} = \delta \gamma / (\gamma \rho)
\]

Variation on Madey Theorems