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Talk outline 

•  Nonlinear systems in general  
•  Integrable systems – definitions and 

properties 
•  Accelerator specifics  
•  List of available integrable lattices for 

accelerators 
•  Big picture, connection to Intensity Frontier 
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Nonlinear systems in general 

 
 
 
 

1) All solutions of classical mechanics, 
known by end of XIX century – integrable 
 
2) Nonintegrable systems constitute majority 
of all real systems  
(1st examples, H. Poincare, 1895) 
 
3) In accelerators, any arbitrary nonlinearity 
(sextupoles, octupoles, etc.) is nonintegrable 
 
4) They are characterized by infinite number 
of resonances, chaotic motion around unstable  
points (homoclinic and heteroclinic structures), 
diffusion, particle loss, and beam-blow-up 
(on the right, horizontal phase space of 
2D motion in linear lattice with 1 octupole) 
 
5) Even most mathematicians gave up on the problem 
V. Arnol’d – topological classification is impossible 
V. Lazutkin – it is not known if the area of chaotic motion is finite in general 
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Integrable systems – exclusive and rare case of 
nonlinear systems 

1)                                 1D – case –integrate and inverse                   

                                     the function to get x(t) 

2) Integration is possible when invariant is “simple”; 

3) N-dimensions – N commuting “good” invariants 
needed for integration (Liouville theorem); 

4) All systems have invariants, but they are very 
complex in general; 

5) We need simple invariants for predictable motion. 

Perturbed integrable systems?  KAM theorem statement 
– volume of chaotic motion is exponentially small – 
perturbations<10%? 

Main goal – elimination of resonances and introducing 
large tune spread  
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Accelerator Specifics 

1) Potential is finite in vacuum chamber 

2) Hamiltonian is time-dependent and is not 
invariant any more (accelerators need 
insertions for injection, extraction, RF, etc.) 

3) Fields obey Maxwell equations – severe 
limiting factor in finding integrable potentials 

4) Need Hamiltonians of                  type  
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Kepler’s problem – integrable 
2 Invariants – angular momentum and  
Hamiltonian (energy) 
Accelerator systems have many restrictions 
as compared to this case 
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On the way to integrability (resonance suppression) 

There are important steps made toward 
elimination of resonances (integrability)   

1)  Colliding beams: 

     a) Round – angular momentum conservation- 1D 
motion for r (Novosibirsk, 80’s, realized at 
VEPP2000, tune shift around 0.15 achieved); 

     b) Crab waist - decoupling x and y motion (P. 
Raimondi (2006), tune shift 0.1 achieved at DΑΦΝΕ), 
factor 2 increase is probable. 

2)  Numerical methods to eliminate resonances (J. Cary 
and colleagues, 1994-present); 

3) Exact solutions for realization– our goal. The list is 
presented in next slides 
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List of 1D Lattices (distributed fields) 
1) Linear forces +            (β - beta-function, U -arbitrary  

function). In normalized variables (NV) 

      

      we get time independent Hamiltonian. This 
transformation - foundation of IOTA lattice, invariant 
is quadratic in momentum. 

2) Any integrable case after NV transformation is again 
integrable. The other transformation 

    So there are classes of integrable systems.  

3) Invariants higher order in momentum (Danilov, 
Perevedentsev (D-P) EPAC 1996); 

We have vast variety of integrable systems. The reason 
– lots of choice U(x,t) – 2D function.   
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McMillan nonlinear optics 
•  In 1967 E. McMillan published a paper 

•  Final report in 1971.  This is what later 
became known as the “McMillan mapping”: 
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1D lattices with thin nonlinear lenses 
Variety of solutions shrinks – only 1 and 2 thin lens 

solutions are known  

1)  McMillan lattice –1 thin lens; 

2)  Generalizations (D-P, 1992-1995) – 1 and 2 thin 
lenses (π/2 phase advance in between): 

     a) 

     b) Combination of logarithmic, polynomial, 
exponential, or trigonometric functions of coordinate 
(D, PAC 2009). Invariants are trigonometric, 
exponential, or polynomial in coordinates and 
momentum. 

3) Up to 6th order invariants in momentum (D-P,1995) 

4)  More than 2 different lens solutions unknown. 
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Collection of 1D integrable cases 

2− 1− 0 1 2
600−

400−

200−

0

200

400

600
500

499.021−

.5− .5pxi j, 

1.2691.26−

.5− .5

xi j, 
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approaches bare lattice tune 1/4 

Logarithmic and exponential lenses 
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2D case with real fields 
   1) All thin lens solutions can be carried over to 2D case 

after replacing coordinates and momentum with complex 
ones                              This  special form is dictated by 
Laplace equation for magnetic or electrostatic lenses. All 
cases give unstable motion due to sum resonance.    

   2) Round colliding beams – can be realized only with 
space charge, present in vacuum chamber: 

       a) 1 or 2 thin lenses with radial kicks                                  

       b) Time dependent potential                . 

   3) Approximate cases – J. Cary & colleagues + big 
decoupling of x-y motion and use of 1D solutions; 

   4)   Stable integrable motion without space charge in 
Laplace fields – the only known exact case is IOTA case  
(Danilov, Nagaitsev, PRSTAB 2010); Sergei’s talk 
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Connection to “big picture”- colliders 

•  Round beams and crab-waist scheme lead to 
reduction of resonances. Further reduction may 
result in factor 2 increase in beam-beam tune shift  

•  Presented two cases of round beam “integrable” 
kicks can be utilized directly in ERHIC collisions 

•  It will result in reducing electron beam size and halo 
for recycling e-beam in energy recovery linac 

•  All new colliders can in principle incorporate 
“integrable” colliding beams 
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Connection to big picture - instabilities 

•  Fast instabilities can be damped sometimes only by 
betatron frequency spread. Examples: 

   a)  PSR (Los Alamos) – feedback gives 25% threshold 
increase for e-p instability; octupoles produce large 
beam loss and can’t be used (M. Plum, private 
communication); 

   b) SNS Ring – feedback can dump only some modes; 
some unstable modes of instability appear not at 
betatron tunes (nu_inst=0.5-2*nu_betatron, probably, 
some higher modes are excited?); 

  c) Old design of VLHC – resistive wall instability has 
increments of around 1/3 of revolution time. 
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Connection to big “picture”- space charge 
•  There are cases when space charge can be 

incorporated into integrable lattice (was under 
development by TECH-X). Best distribution is an 
open question – space charge limited machines can 
use these solutions. Examples: boosters, medical 
accelerators of TRAP type – synchrotron with low 
injection energy http://www.protominternational.com 

•  Halo growth in linacs can be mitigated by nonlinear 
elements (David’s talk). 

•  If space charge is compensated by electron cloud, 
the current is limited only by e-p instability – this is 
the best case of applicability of integrable optics 
since it kills instabilities. Example of application – 
gamma quants generator, based on 1.7 MeV proton 
beam and carbon gas  (V. Dudnikov, C. Ankenbrandt, 
IPAC 2011); 
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Starting point- nonlinear KV 
•  The reason for this choice – the first step has to be simple, 

solvable, and continuously transformable to well-known linear 
cases for comparisons. Is it really possible to create it self-
consistently?  
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1)  Let’s forget about time dependence for a moment. 
Nonlinear KV distribution f=C δ(H-H0) (H is 
Hamiltonian in normalized variables) produce 
constant density but non elliptic shape (can be 
verified); 

2)  Yellow figure is what we get for special octupole 
lattice with one invariant for strong nonlinearity; 

3)  Let’s add external current with the same density 
(blue color) to form an ellipse; 

4)  Such combination creates linear fields inside the 
beam (yellow shape)-same x-y defocusing; 

5)  The external currents could be moved far away from 
the beam to create same fields inside it (at least 
approximately, e.g. making first multipoles in fields 
expansion); 

6)  External current has to be proportional to beam 
current; 

7)  If they are formed by image current (David’s 
proposal) this happens automatically. 

x 

y 

configuration space 
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Nonlinear KV- cont. 
•  Linear fields from the beam – what is the point? 

They can be integrated into integrable optics! 

Presentation_name 

1)  Let’s recall the time dependence – initial beta 
function (solid line) depends on time, and the beam 
size (and its space charge field) depends on 
longitudinal position as well; 

2)  One has to recalculate nonlinear elements of the 
lattice (they depend on beta) using new self-
consistent beta function; 

3)  The external fields to make space charge linear 
have to vary with longitudinal position accordingly; 

4)  After all these steps we get nonlinear integrable 
motion for arbitrary space charge; 

5)  We get spread of tunes in spite of all particles have 
one same integral of motion, because the second 
integral varies in wide range; 

β

Transverse beam size at  
three different locations 
of nonlinear insert 
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Nonlinear KV- cont. 
•  More important details 
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1)  This distribution is periodic and the motion is self-
consistent but it lacks one property of linear KV- it 
doesn't preserve its shape if mismatched (David’s 
talk); 

2)  It needs matching not only to space charge force, 
but also adjusting nonlinear elements according to 
beam density; 

3)  The exact solutions only valid for simple lattice (thin 
round lens and nonlinear insert), used in David’s 
talk; 

4)  If the thin lens is realized by several quads and 
straights, the numerical continuation is possible, but 
I don’t see how we can do it analytically; 

5)  The conclusion – it is a nice starting step; maybe 
more simple procedures are required to reach our 
ultimate goal – getting robust nonlinear lattices 
for intense beams with self-consistent space 
charge distributions, immune to errors, 
mismatches and instabilities (like ep instability) 

IOTA ring layout 
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Nonlinear KV- cont. 
•  More important details 
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1)  This distribution is periodic and the motion is self-
consistent but it lacks one property of linear KV- it 
doesn't preserve its shape if mismatched (David’s 
talk); 

2)  It needs matching not only to space charge force, 
but also adjusting nonlinear elements according to 
beam density; 

3)  The exact solutions only valid for simple lattice (thin 
round lens and nonlinear insert), used in David’s 
talk; 

4)  If the thin lens is realized by several quads and 
straights, the numerical continuation is possible, but 
I don’t see how we can do it analytically; 

5)  The conclusion – it is a nice starting step maybe 
more simple procedures are required to reach our 
ultimate goal – getting robust nonlinear lattices 
for intense beams with self-consistent space 
charge distributions, immune to errors, 
mismatches and instabilities (like e-p instability) 

IOTA ring layout 
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General thoughts on best distributions 
•  Why nonlinear lattice?  Space charge provide tune spread 

itself. Unfortunately, instabilities (at SNS, PSR) don’t profit 
from space charge spread – maybe because the centroid tune 
doesn’t depend on space charge. Other reasons- mismatches, 
envelope oscillations near axis, etc. Also – new venue for AP 

   1) Our idea was to start with something very nonlinear and 
predictable and see what happens with perturbed beam 
(David’s talk) with modest space charge  and then increase it; 

  2)  S. Lund idea is also in the same vein – to make adiabatic 
changes of intensity to see how self-consistent distribution 
evolves; 

  3) A. Sessler - Just take a periodic channel that is non-linear, put 
in some space charge and see if it settles down to something 
that is stable. I think this is what we should come to if we get 
very fast calculations – we need some Figure of Merit for final 
distributions to make good choice of initial distributions. 

4) Many possibilities – one has a danger to sink into deep see of 
chaotic motion without understanding what is going on 
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3D case 
•  Nonlinear integrable traps for Laplacian 

fields were found (Nagaitsev, Danilov, 
http://arxiv.org/abs/1111.1260); 

•  Only some 3D stationary distributions and 
small deviations from them analyzed by 
Gluckstern, et al, PRE58, 4977 (1998) 

•  Really important for linacs like SNS one 

•  No 3D KV, but more involved linear self-
consistent distributions exist (see Danilov, et 
al, 2003). Open question -  3d nonlinear 
motion with space charge 
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Conclusion 
•  Some examples of nonlinear resonance elimination 

(round beam and carb waist) successfully 
implemented; 

•  Nonlinear “integrable” accelerator optics is next step 
in the same direction; 

•  Examples of fully integrable motion exist for first 
ever implementations (IOTA ring), encouraging 
simulation results obtained by Tech-X; 

•  More solutions definitely exist – unfortunately, the 
mathematics is not well-developed for accelerators – 
it includes solving functional or high order partial 
differential equations; 

•    Virtually any next generation machine with 
nonlinearities can profit from resonance 
eliminations.  


