X-band activities at FERMI FEL project in Trieste Gerardo D'Auria Sincrotrone Trieste LBNL 15-06-2012 ### **Outline** - > The FERMI@Elettra FEL project - > X-band linearizer - > RF power source: - HV modulator - XL5 klystron - Accelerating structure and WG system - > Preliminary beam tests - > Outlook and conclusions ## Elettra Laboratory ## FERMI@Elettra FEL project | Parameter | FEL1 | FEL2 | | |-----------------------------------|---------|-------|--| | Wavelength (nm) | 80-20 | 20-4 | | | Electron beam energy (GeV) | 1.2 1.5 | | | | Bunch charge (nC) | 800 | | | | Bunch length FWHM (fs) | 500 | | | | Peak current (A) | 800 | | | | Normalized emittance slice (µrad) | ≤ 1.2 | ≤ 1.0 | | | Energy spread slice (KeV) | ≤ 250 | ≤ 150 | | | Repetition rate (Hz) | 10-50 | | | #### X-band linearizer ## The X-band project - When the X-band program started, none of the components of the system were commercially available. - For this reason a program for their development was activated and a three years grant from Regione Friuli Venezia Giulia was awarded (2009 – 2011, now extended up to 2013). - To address the very challenging tasks, we decided to set up three important collaborations with external institutes: - ➤ On Feb. 19th 2009, together with CERN and PSI, a MoU with SLAC, for the construction of five X-band klystrons (scaled at European frequency of 11.992 GHz), was signed. Two klystrons for Elettra, two for PSI and one for CERN. - > On Nov. 17th 2009, we have activated a collaboration with PSI for the construction of four X-band structures. - ➤ For the high power WG components and for the construction of the structures, we decided to join the CLIC Collaboration (Compact Linear Collider) at CERN (MoU signed on April 30th 2010). - For the HV modulator we decided to adopt an internal solution based on the PFN technology. ## X-band system milestones | • | Modulator c | ompletion ar | nd tests | July '1 | 11 | |---|-------------|--------------|----------|---------|----| |---|-------------|--------------|----------|---------|----| First XL5 klystron at Elettra August '11 Klystron installation and tests (diode) Sept. '11 Accelerating structure and WG installations Oct. '11 XL5 activation and tests with RF Nov.-Dec. '11 • XL5 gain curves verification (with SLAC) Jan. '12 RF power connection to accel. structure Jan. '12 RF conditioning (structure and WG system) Febr. '12 • Preliminary beam tests Febr.-March '12 LLRF improvements and second test phase May '12 ## RF power plant GdA_LBNL 15-06-2012 8 ## Klystron driving pulses ## Klystron operation | XL5-1B Operation data | | | | | | | | | | | |-------------------------------|---------------------|--------------------|-------------------|-------------------------|---------------------|---------------------|--------------------|----------------|----------------------|------------------------| | In diode mode at 50 Hz p.r.r. | | | | | | With 300 nsec RF | | | | | | | | | | | imetric
rements | V and I integrals | | | | | | Charging voltage | Anodic voltage | Anodic current | Micro perveance | Body
power | Collector power | Collector power | Beam
losses | Transm. effic. | Input RF power | Output RF power | | V _{fug} (KV) | V _k (KV) | I _k (A) | (^μ P) | B _p (W) | C _p (KW) | C _p (KW) | B _L (%) | η(%) | RF _{in} (W) | RF _{out} (MW) | | 33.3 | 350 | 245 | 1.18 | 83 | 8.40 | 8.37 | 0.98 | 99.02 | 571 | 9.1 | | 34.5 | 360 | 259 | 1.20 | 79 | 9.00 | 9.23 | 0.88 | 99.12 | 571 | 12.1 | | 35.7 | 370 | 267 | 1.19 | 91 | 9.64 | 9.87 | 0.95 | 99.05 | 571 | 15.7 | | 36.8 | 380 | 278 | 1.19 | 98 | 10.22 | 10.58 | 0.96 | 99.04 | 571 | 19.5 | | 38.0 | 390 | 289 | 1.19 | 89 | 10.86 | 10.99 | 0.82 | 99.18 | 571 | 24.3 | | 39.2 | 400 | 300 | 1.19 | 93 | 11.61 | 11.57 | 0.80 | 99.20 | 571 | 29.2 | | 40.4 | 410 | 311 | 1.18 | 100 | 12.29 | 12.03 | 0.81 | 99.19 | 571 | 34.5 | | Filament hours (total) 2781 | | | | 040 | | | | | | | | HV hours | | | 1373 | ← Data up to April 2012 | | | | | | | | Diode | | | 232 | | | | | | | | | RF (WG I | oads) | | 678 | | | | | | | | | RF (secti | on and WG | circuit) | 463 | | | | | | | | GdA_LBNL 15-06-2012 ## Klystron activation Calorimetric measurements ## Klystron gain curves ## Accelerating structure | Parameter | Value | Units | | |------------------------------------|-----------|-------|--| | Structure type | 5/6 π, CG | | | | Working frequency | 11.992 | GHz | | | Overall length | 0.965 | m | | | Active length | 0.750 | m | | | Iris diameter (average) | 9.1 | mm | | | Filling time | 100 | ns | | | Pulse repetition rate | 50 | Hz | | | Max heat load @ operating gradient | 300 | W | | R. Zennaro, M. Dehler, PSI Coutesy of D. Gudkov, CERN GdA_LBNL 15-06-2012 ## Copper disks - The accelerating structure body consists of a stack of thick cylindrical copper disks, which are machined following the RF design of the cavity geometry. - For the final RF frequency tuning, the disks are equipped with four radial holes. - Each special wakefield monitor disk incorporates four coupling holes and is also equipped with tuning holes. Coutesy of D. Gudkov, CERN ## Cooling system Flexible hoses WITZENMANN Standard fittings LEGRIS - Two parallel cooling circuits; - 8 cooling blocks each of 394 mm long; - Brazed directly onto the accelerating structure body; - Standard water connectors. Coutesy of D. Gudkov, CERN GdA_LBNL 15-06-2012 ## Preliminary RF measurements #### CERN preliminary RF tests structure Nº 2 ## **Bonding tests** Bonding of 5 test disks Coutesy of D. Gudkov, CERN ## Structure vacuum baking Structure vacuum bake-out at CO.ME.B. (Rome): - •~ 350 hours - •oven pressure ≤ 10⁻⁸ torr - T = 650 °C #### Structure preparation #### Structure installed 19 ## Waveguide components Vacuum valve adapter Courtesy of F. Peauger ## XL5 waveguide connection X-band plant with vacuum insulation Pumping ports, mode converters and vacuum valve assembly #### X-band beam effects Measured ε_x and ε_y as we move the beam (6.5 ps_fwhm, 350 pC) along a line from ±1 mm in x-y, through the X-band structure (passive, no RF) ## First beam tests with RF_27-02-12 X-band OFF X-band gain ~10 MeV GdA_LBNL 15-06-2012 23 ## Structure gradient We set $V_k = 385 \text{ kV}$, corresponding to X-band energy gain=20.3 MeV ## Beam energy jitter #### Beam energy 341.2 MeV #### Beam energy 321.8 MeV #### Beam energy 301.9 MeV X-band set +20 MeV, on crest (acceleration) energy jitter ~500 keV (rms) X-band at zero crossing, no energy gain energy jitter ~200 keV (rms) X-band set -20 MeV, @180 deg (deceleration) energy jitter ~900 keV (rms) #### First tests on beam compr. March '12 X-band at -19.2 MeV (@180 deg) #### First tests on beam compr. March '12 With X-band #### Charge distribution analysis with deflecting cavities #### X-band @-19 MeV mscrccd_tls.03 @ 1.2 GeV ## Last results_May '12 X-band at 19.4 MeV beam energy 320 MeV X-band in acceleration energy jitter ~ 0.1% X-band in acceleration energy jitter ~ 0.1% ## Compression May '12 X-band at 19.4 MeV -180° #### Compression May '12 X-band at 19.4 MeV -178° X-band at 19.4 MeV -175° ## Compression May '12 X-band at 19.0 MeV -180° From . William Fawley <wmfawley@lbl.gov> **Subj** grazie! Re: READ this --- from FERMI CR --- do you have the ect: calibration table for K4 voltage **Date:** Wed, 13 Jun 2012 21:10:51 +0200 To: Gerardo D'Auria <gerardo.dauria@elettra.trieste.it> grazie -- <u>we are having pretty good success -- making</u> <u>ostensibly nice pulses with 700-800 A peak currents with</u> <u>reasonable semi-flat portions</u>; we have K4 at 37 kV enjoy the California sun (until the fog comes in!) cheers -- Bill & Simone GdA_LBNL 15-06-2012 #### **Conclusions** #### Short term program - Full structure characterization with the beam: - find the best operating point; - more dedicated studies on the beam kick due to the RF couplers, - · verify wake fields effects, etc. #### Long term program > Activation of the wake field monitors #### **Acknowledgements** #### Thanks to: The members of linac group and Fermi commissioning team, Sincrotrone Trieste. The colleagues of CERN and PSI working on the X-band structure for the linearizer and the XL5 klystron. F. Peauger, CEA. J. Eichner, A. Haase, D. Sprehn, A. Vlieks, SLAC.