

The Challenges of a Storage Ring-based Higgs Factory

William A. Barletta

Director, US Particle Accelerator School
Dept. of Physics, MIT
Economics Faculty, University of Ljubljana

Caveat emptor

This is a zero-order pedagogical look based on basic accelerator physics

My numbers are not CERN's numbers, but they are quite close (~5%)

For a more precise analysis based on a real lattice design look at arXiv: 1112.2518.pdf

by F. Zimmermann and A. Blondel

Scenario: LHC has discovered the Higgs

- ❖ Your HEP friends want to study its properties
 - ➤ "Monte Carlo studies show that you need ~ 25 K Higgs for a paper that can get the cover of Nature"
 - > They & their students don't want to be on shift for a lifetime
- * They comes to you, his favorite machine builder

"We *need* to build a factory to produce 6000 Higgs per year. Projected costs (€ 15 B) all but killed the ILC. Now we know that we don't need 500 GeV. What about something half that energy?"

* You reply,

> "You don't understand about linacs. Half the energy costs you 75% of the original price."

"Let's try something different - a storage at CERN."

After all LEP 2 got up to 209 GeV."

What LEP2 might have seen How can we produce a Higgs with e⁺e⁻?

They respond, "Exactly, but they did not see anything!

The cross-section ~ 2 fb. They would have had to run for decades.

A muon collider would be ideal. The σ_H is 40,000 times larger."

"True," you reply, "be we don't even know if it is possible.

Let's go back to storage rings. How much energy do you need?"

Dominant reaction channel with sufficient o

$$\bullet e^+ + e^- ==> Z^* ==> H + Z$$

$$M_H + M_Z = 125 + 91.2 = 216.2 \text{ GeV/c}^2$$

==> set our CM energy at the peak σ : ~240 GeV

Physics "facts of life" of a Higgs factory Will this fit in the LHC tunnel?

- ❖ Higgs production cross section ~ 220 fb (2.2 x 10⁻³⁷ cm²)
- Peak $\mathcal{L} = 10^{34} \text{ cm}^{-1} \text{ s}^{-1} = > < \mathcal{L} > \sim 10^{33} \text{ cm}^{-1} \text{ s}^{-1}$
- \sim ~30 fb⁻¹ / year ==> 6600 Higgs / year
- ❖ Total e⁺e⁻ cross-section is ~ 100 pb (100GeV/E)²
 - ➤ Will set the luminosity lifetime

We don't have any choice about these numbers

Oh, and don't use more than 200 MW of electricity

Road map for the analysis

- How do "facts of life" affect the peak luminosity
 - First some physics about beam-beam interactions
 - ==> Luminosity as function of I_{beam} and E_{beam}
 - \triangleright What β^* is needed?
- What is the bunch length, σ_z , of the beam?
- \bullet How does rf system give us σ_z
 - What are relevant machine parameters, α_c , f_{rev} , f_{rf} , ϕ_{synch} , etc.
 - \triangleright But first, what is $\Delta E/E$
- How synchrotron radiation comes in
 - What is the rf system
 - > What sets the beam size at the IP
- * What are life time limitations
- Conclusions

Storage ring physics: Beam-beam tune shifts Space charge fields at the Interaction Point

At the IP space charge cancels; but the currents add ==> the IP is a "lens"

i.e, it adds a gradient error to the lattice, $(k_{\text{space charge}}\Delta s)$

where $(k_{\text{space charge}}\Delta s)$ is the kick ("spring constant') of the space charge force

Therefore the tune shift is

$$\Delta Q = -\frac{1}{4\pi} \beta^*(s) (k\Delta s)$$

For a Gaussian beam, the space charge kick gives

$$\Delta Q \approx \frac{r_e}{2} \frac{\beta^* N}{\gamma A_{\rm int}}$$

Effect of tune shift on luminosity

$$\mathcal{L} = \frac{f_{coll} N_1 N_2}{4A_{int}}$$

• Write the area in terms of emittance & β at the IR (β *)

$$A_{\text{int}} = \sigma_x \sigma_y = \sqrt{\beta_x^* \varepsilon_x} \circ \sqrt{\beta_y^* \varepsilon_y}$$

For simplicity assume that

$$\frac{\beta_x^*}{\beta_y^*} = \frac{\varepsilon_x}{\varepsilon_y} \Longrightarrow \beta_x^* = \frac{\varepsilon_x}{\varepsilon_y} \beta_y^* \Longrightarrow \beta_x^* \varepsilon_x = \frac{\varepsilon_x^2}{\varepsilon_y} \beta_y^*$$

In that case

$$A_{\rm int} = \varepsilon_x \beta_y^*$$

And

$$\mathcal{L} = \frac{f_{coll} N_1 N_2}{4\varepsilon_x \beta_y^*} \sim \frac{I_{beam}^2}{\varepsilon_x \beta_y^*}$$

To maximize luminosity, Increase N to the tune shift limit

❖ We saw that

$$\Delta Q_{y} \approx \frac{r_{e}}{2} \frac{\beta^{*} N}{\gamma A_{\text{int}}}$$

Or, writing N in terms of the tune shift,

$$N = \Delta Q_{y} \frac{2\gamma A_{\text{int}}}{r_{e} \beta^{*}} = \Delta Q_{y} \frac{2\gamma \varepsilon_{x} \beta^{*}}{r_{e} \beta^{*}} = \frac{2}{r_{e}} \gamma \varepsilon_{x} \Delta Q_{y}$$

Therefore the tune shift limited luminosity is

$$\mathcal{L} = \frac{2}{r_e} \Delta Q_y \frac{f_{coll} N_1 \gamma \varepsilon_x}{4 \varepsilon_x \beta_y^*} \sim \Delta Q_y \left(\frac{IE}{\beta_y^*} \right)$$

Tune shift limited luminosity of the collider

$$L = \frac{N^{2}c\gamma}{4\pi\varepsilon_{n}\beta^{*}S_{B}} = \frac{1}{er_{i}m_{i}c^{2}} \frac{Nr_{i}}{4\pi\varepsilon_{n}} \left(\frac{EI}{\beta^{*}}\right) = \frac{1}{er_{i}m_{i}c^{2}} \frac{Nr_{i}}{4\pi\varepsilon_{n}} \left(\frac{P_{beam}}{\beta^{*}}\right) \qquad i = e, p$$
Linear or Circular

Tune shift

In practical units for electrons

$$\mathcal{L}_{peak} = 2.17 \circ 10^{34} \left(1 + \frac{\sigma_x}{\sigma_y} \right) \Delta Q_y \left(\frac{1 \text{ cm}}{\beta^*} \right) \left(\frac{E}{1 \text{ GeV}} \right) \left(\frac{I}{1 \text{ A}} \right)$$

Experimentally, at the tune shift limit $\left(1 + \frac{\sigma_x}{\sigma_y}\right) \Delta Q_y \approx 0.1$ for electrons

$$\mathcal{L}_{peak} = 2.17 \circ 10^{33} \left(\frac{1 \text{ cm}}{\beta^*} \right) \left(\frac{E}{1 \text{ GeV}} \right) \left(\frac{I}{1 \text{ A}} \right)$$

We can only choose I(A) and β*(cm)

- For the LHC tunnel with $f_{\text{dipole}} \sim 2/3$, $\rho_{\text{curvature}} \sim 2700 \text{ m}$
- * Remember that

$$\rho(m) = 3.34 \left(\frac{p}{1 \text{ GeV/c}}\right) \left(\frac{1}{q}\right) \left(\frac{1 \text{ T}}{B}\right)$$

- Arr Therefore, $B_{max} = 0.15 \text{ T}$
- ❖ Per turn, each beam particle loses to synchrotron radiation

$$U_o(keV) = 88.46 \frac{E^4(GeV)}{\rho(m)}$$

or 6.54 GeV per turn

$$I_{beam} = 7.5 \text{ mA} = > \sim 100 \text{ MW of radiation (2 beams)}$$

CERN management "chose" I; That leaves β * as the only free variable

Then

$$L_{peak} \approx 1.9 \circ 10^{33} \left(\frac{1 \text{ cm}}{\beta^*} \right)$$

Therefore to meet the luminosity goal

$$<\beta_{x}^{*}\beta_{y}^{*}>^{1/2} \sim 0.2 \text{ cm}$$
 (10 x smaller than LEP 2)

❖ Is this possible? Recall that is the depth of focus at the IP

The "hourglass effect" lowers

$$\mathcal{L}$$

For maximum luminosity

$$==> \sigma_z \sim \beta^* \sim 0.2$$
 cm

Bunch length, σ_{z_s} is determined by ω_{rf} & V_{rf}

The analysis of longitudinal dynamics gives

$$\sigma_z = \frac{c\alpha_C}{\Omega_{sync}} \frac{\sigma_p}{p_0} = \sqrt{\frac{c^3}{2\pi q}} \frac{p_0\beta_0 \eta_C}{h f_0^2 \hat{V} \cos(\varphi_S)} \frac{\sigma_p}{p_0}$$

where $\alpha_c = (\Delta L/L) / (\Delta p/p)$

* If the beam size is $\sim 100 \mu m$ in most of the ring

$$\frac{\Delta L}{L} < \frac{0.01}{280000} \approx 3 \times 10^{-7}$$

for electrons to stay within σ_x of the design orbit

* To know bunch length & α_c we need to know $\Delta p/p \sim \Delta E/E$

Bunch length, σ_z is determined by $\Delta E/E$

For electrons to a good approximation

$$\Delta E \approx \sqrt{E_{beam}} < E_{critical, photon} >$$

and

$$\varepsilon_c[keV] = 2.218 \frac{E[GeV]^3}{\rho[m]} = 0.665 \cdot E[GeV]^2 \cdot B[T]$$

- ♦ So $\varepsilon_{crit} \approx 1.5 \text{ MeV} = > \Delta E/E \approx .0035$
- ❖ Therefore for electrons to remain near the design orbit

$$\alpha_c = (\Delta L/L) / (\Delta p/p) \sim 8 \times 10^{-5}$$

(was
$$1.8 \times 10^{-4}$$
 for LEP2)

The rf-bucket contains $\Delta E/E$ in the beam

- * As $U_o \sim 6.5$ GeV, $V_{rf,max} > 6.5$ GeV + "safety margin" to contain $\Delta E/E$
- Some addition analysis

$$\left(\frac{\Delta E}{E}\right)_{\text{max}} = \sqrt{\frac{q\hat{V}_{\text{max}}}{\pi h\alpha_c E_{\text{synchronous}}} \left(2\cos\varphi_s + (2\varphi_s - \pi)\sin\varphi_s\right)}$$

where h is the harmonic number ($\sim C_{LEP3} / \lambda_{rf} \sim 9x10^4$)

❖ The greater the over-voltage, the shorter the bunch

$$\sigma_{S} = \frac{c\alpha_{C}}{\Omega_{synch}} \left(\frac{\Delta E}{E}\right) = \sqrt{\frac{c^{3}}{2\pi q}} \frac{p_{0}\beta_{0}\alpha_{C}}{h f_{rev}^{2} \hat{V}_{max} \cos(\varphi_{S})} \left(\frac{\Delta E}{E}\right)$$

For the Higgs factory...

- ❖ The maximum accelerating voltage must exceed 9 GeV
 - \triangleright Also yields $\sigma_z = 3$ mm which is okay for $\beta^* = 1$ mm
- ❖ A more comfortable choice is 11 GeV (it's only money)
 - \triangleright ==> CW superconducting linac for LEP 3 ==> ϕ_{synch}
- ❖ Therefore, we need a SCRF linac in 4 pieces
 - Remember that the beam loses $\sim 6\%$ of its energy in one turn LEP2 lost 3.4 GeV $\sim 3\%$ per turn
 - ➤ We need a higher gradient than LEP2; 6 MeV/m is not enough
 - \gt 22 MeV/m ==> 500 m of linac (the same as LEP 2)
- \Leftrightarrow High gradient ==> f_{rf} > 1GHz;

For the Higgs factory...

- ❖ The maximum accelerating voltage must exceed 9 GeV
 - \triangleright Also yields $\sigma_z = 3$ mm which is okay for $\beta^* = 1$ mm
- ❖ A more comfortable choice is 11 GeV (it's only money)
 - > ==> CW superconducting linac for LEP 3
 - > This sets the synchronous phase
- ❖ For the next step we need to know the beam size

$$\sigma_i^* = \sqrt{\beta_i^* \varepsilon_i}$$
 for $i = x, y$

* Therefore, we must estimate the natural emittance which is determined by the synchrotron radiation $\Delta E/E$

The minimum horizontal emittance for an achromatic transport

$$\varepsilon_{x,\text{min}} = 3.84 \times 10^{-13} \left(\frac{\gamma^2}{J_x}\right) F^{\text{min}} \text{ meters}$$

$$\approx 3.84 \times 10^{-13} \gamma^2 \left(\frac{\theta_{achromat}^3}{4\sqrt{15}}\right) \text{ meters}$$

$$\varepsilon_{\rm y} \sim 0.01 \ \varepsilon_{\rm x}$$

Because α_c is so small, we cannot achieve the minimum emittance

- For estimation purposes we will choose 20 ε_{min} as the mean of the x & y emittances
- ❖ For the LHC tunnel a maximum practical dipole length is 15 m
 - \rightarrow A triple bend achromat ~ 80 meters long ==> $\theta = 2.67 \times 10^{-2}$

$$\langle \epsilon \rangle \sim 7.6 \text{ nm-rad} = > \sigma_{\text{transverse}} = 2.8 \mu \text{m}$$

How many particles are in the bunch? Or how many bunches are in the ring?

We already assumed that the luminosity is at the tune-shift limit

We have

$$L = \frac{N^{2}c\gamma}{4\pi\varepsilon_{n}\beta^{*}S_{B}} = \frac{1}{er_{i}m_{i}c^{2}} \frac{Nr_{i}}{4\pi\varepsilon_{n}} \left(\frac{EI}{\beta^{*}}\right) = \frac{1}{er_{i}m_{i}c^{2}} \frac{Nr_{i}}{4\pi\varepsilon_{n}} \left(\frac{P_{beam}}{\beta^{*}}\right) \qquad i = e, p$$
Linear or Circular

Tune shift

• Or
$$Q = \frac{Nr_e}{4\pi\varepsilon\gamma} \implies N = \frac{4\pi\varepsilon\gamma}{r_e}Q$$

- \bullet So, $N_e \sim 1.3 \times 10^{11} \text{ per bunch}$
- \bullet I_{beam} = 7.5 mA ==> there are only 3 bunches in the ring

Let's return to Space charge fields at the collision point

At the IP space charge cancels; currents add

- ==> strong beam-beam focus
 - => Luminosity enhancement
 - => Very strong synchrotron radiation (beamstrahlung)

Beamstrahlung is important in linear colliders

What about the beams in LEP-3?

At the collision point...with $\mathcal{L} = 10^{34}$

$$I_{\text{peak}} = N_e / 2 \sigma_z = > I_{\text{peak}} \sim 1.6 \text{ kA}$$

 \bullet Therefore, at the beam edge (σ)

$$B = I(A)/5r(cm) = 1.6 MG!$$

 When the beams collide they emit synchrotron radiation (beamstrahlung)

$$\varepsilon_{c,Beams}[keV] = 2.218 \frac{E[GeV]^3}{\rho[m]} = 0.665 \cdot E[GeV]^2 \cdot B[T] = 1.1 \text{ GeV}$$

❖ But this accumulates over a damping time

 $\Delta E_{Beams} \approx (2/J_E)^* Sqrt$ (number of turns in damping time) $\varepsilon_{c,Beams} \approx 10 \text{ GeV}$

The rf-bucket must be very large to contain such a big $\Delta E/E$ Beamstrahlung limits beam lifetime & energy resolution of events

- $\Rightarrow \beta^* \sim 1.5 \text{ cm} = > 9 \text{ GeV of linac is okay}$
- \bullet I_{peak} can be reduced 3 x and ...
- ❖ The beam size can increase 3 x
- \Leftrightarrow ==> B_{sc} is reduced ~10 x ==> ΔE_{Beams} ~ 1 GeV
 - \triangleright This is < 1% of the nominal energy
 - > Many fewer electrons will be lost

A much easier machine to build and operate

Yokoya has done a more careful analysis

Beamstrahlung limited luminosity

$$\mathcal{L} = 4.57 \times 10^{33} \left(\frac{\rho}{1 \text{ km}}\right) \left(\frac{P_{SR}}{100 \text{ MW}}\right) \sqrt{\frac{(\Delta E_{beams}/E)}{0.1\%}} \left(\frac{100 \text{ GeV}}{E}\right)^{4.5} \left(\frac{1 \text{ nm}}{\varepsilon_{y}}\right)^{1/2} \text{ cm}^{-2} s^{-1}$$

This implies very large rings, high beam power, and small vertical emittance

Mechanisms limiting beam lifetime

Luminosity lifetime

Total e^+e^- cross-section is ~ 100 pb • $(100 \text{GeV/E})^2$

- Beamstrahlung lifetime
- ❖ Beam-gas scattering & bremsstrahlung
- ❖ Tousheck lifetime
- * And...

And there are other problems

* Remember the Compton scattering of photons up shifts the energy by $4 \gamma^2$

E=
$$\gamma$$
mc² λ_{out} λ_{in}

- Where are the photons?
 - > The beam tube is filled with thermal photons (25 meV)
- ❖ In LEP-3 these photons can be up-shifted as much as 2.4 GeV
 - > 2% of beam energy cannot be contained easily
 - ➤ We need to put in the Compton cross-section and photon density to find out how rapidly beam is lost

The bottom line: The beam lifetime is 10 minutes

- ❖ We need a powerful injector
- Implies rapid decay of luminosity as operation shrinks away from tune shift limit

==> we need top-off operation

Figure 2 Possible two ring sketch for LEP3: a first ring (accelerator ring) accelerates electrons and positrons up to operating energy (120 eV) and injects them at a few minutes interval into the low emittance collider ring in which the high luminosity 10³⁴/cm²/s interaction points are situated.

From Zimmermann & Blondel

Conclusions (for $\mathcal{L} = 2 \times 10^{34}$)

- ❖ LEP3 is a machine at the edge of physics feasibility
 - ➤ Beamstrahlung issues require more, detailed study
 - Momentum aperture must be very large
 - > 240 GeV is the limit in the LHC tunnel
- ❖ The cost appears to be << a comparable linear collider
- * A very big perturbation of LHC operations
- Cannot run at the same time as the LHC

The LEP3 idea might be a viable alternative as a future HEP project