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Present Situation 

  ODD Paradox: 

  Particle accelerators are clearly important in society and are being 
used to do many good things that affect people  

  Isotope production for cardiac, body and brain imaging 
  X-ray radiotherapy for Oncology  
  X-rays for cargo and container screening 

  However, the Accelerator Technologies being used for these 
applications were developed in the 1960s and 1970s 

  H- cyclotrons (and even the front end of the LANSE accelerator at LANL) 
  Electron accelerators producing Bremsstrahlung Photons 
  Unsaturated iron magnets at low magnetic field, high mass and power 

consumption 

Starting from scratch now,  we wouldn’t make the same 
technology decisions and outcomes would be better 
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Meanwhile… 

  There has been great progress in all areas of particle 
accelerator science and technology: 

  Beam codes are sufficient quantitative to model phase space 
evolution, space charge and non-linear beam-beam interactions 

  Field design codes are good to ~10-100 ppm 
  Materials databases and analysis tools have benchmarks across a 

wide range of challenging projects and devices 
  There have been several major world-wide engineering 

campaigns (SSC, ITER, LHC…) that unite science, engineering, 
technology to solve a hard problem 

  … 

And y’all here at LBNL (and the Bay Area) have been a big part of 
this progress over the past 3 decades 
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Upfront: Role of LBNL in all this 

  Universities make the most sense to me when they are doing 
fundamental research with students 
  That rhythm makes it hard to meet sprogrammatic deadlines 
  Collision with companies and agencies over publishing results 
  Fundamental research is expensive and high risk 

  Companies  are best at product development 
  People must perform now  
  Regulatory requirements of commercial products require 

specialized infrastructure (Quality, Iso, CGMP, …) 
  Science infrastructure then gives way to incremental product 

development (hard to be science based, just a few do it well) 

  National Labs  simply put, for me, bridge this divide 
  Large research facilities set the tone for Science based 

applications (needed to move accelerator based apps forward) 
  Centers combining specialized engineering and test facilities with 

unique world-class expertise develop ‘organically’ 
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Accelerator Science based Applications of Interest  
in this talk: 

Ion Beam Radiotherapy 

Short Lived PET Isotopes 

Proton Active Interrogation 
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Ion Beam Beam Radiotherapy 

  Around a million people each year in the US and also in 
Europe are treated with X-rays to destroy tumors 
  That’s a few thousand electron accelerators spread around the US 

  The ‘Science’ of radiotherapy (killing tumors with radiation) 
says that Ion Beams (Protons, Heavy Ions) are better than 
Photons 
  No exit dose allows precise conformal mapping of tumors 
  Subsequent lower overall radiation dose means less damage to 

healthy tissue 
  Mounting evidence also suggests that long term secondary cancer 

likelihoods are more than an order lower than with photons 

  Yet, there are at present ~10 PBRT centers in the US treating 
around 50,000 patients/year (5%) 
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Physics… Bragg Curve Stopping of Protons in Water 
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Opportunity… Proton Beam Radiotherapy  
Pediatric Medulloblastoma- with protons the dose is highly 

localized with low collateral damage and risk 
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Challenge… Proton Facilities are very expensive 
relative to Photons 

  Protons are 20x the cost of X-Rays 
  1 room ~$50M 
  3 rooms (IBA Jacksonville below) $150M 
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Sc Synchrocyclotrons for PBRT 
  Guide field B is a very simple, azimuthally symmetric and falls 

about 10% from the center to the effective pole edge (rmax) 
  Axial motion is weak focusing (0<n<1) 
  Acceleration is phase stable (number of orbit are arbitrary) 

  If we set ωrf=ω/γ then the RF frequency will fall synchronously 
as the ions get heavier so that gap crossings are at the right 
times and acceleration is preserved: 

  6 Tesla 250 MeV Synchrocyclotron: 90 MHz  60 MHz 
  9 Tesla 250 MeV: 140 MHz  100 MHz 

  Consequences 
  Variable frequency on a fast time scale (microseconds) is required 
  Acceleration has a low duty factor – the RF can only be reset a few 

hundred times per second 

It is therefore a low intensity accelerator but it scales nicely to high 
magnetic field with very small form factors (Antaya 2004) 
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Compact High Field Synchrocyclotrons 

  Mevion Monarch 
  Mounted on a gantry for rotation about the patient 
  B~9T , Bcoil ~11T 
  254 MeV protons 
  Barnes Jewish Hospital St Louis, operating, FDA approved 

  IBA S2C2 
  Fixed at ground level feeding beams to one or two treatment 

rooms 
  6T 230 MeV or 250 MeV 
  First Operation 2013 
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 Mevion Monarch: about the size and cost of a modern 18 MeV PET 
Cyclotron  

• Nb3Sn Coils:	



• High Jc strand- ~3000 A/mm2 (Oxford)	



• Conductor is derived from DOE HEP Conductor Development 
Program extensively vetted by US LARP	



• Wind & React, Cable in Channel	



• Follows a conductor concept developed shown above for the US 
DOE OFES Levitated Dipole Experiment (Minervini et al/MIT)	



• MIT design under sponsored research agreement with Mevion 
2004-2007  	
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 Sc Coils- react & wind Rutherford Cable with Nb3Sn strand 
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 Beam Dynamics scaling to high fields (Antaya 2004) 
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Diagnostic Nuclear Medicine 

Nuclear imaging is an effective, non-invasive and painless diagnostic commonly used 
in oncology, cardiology and neurology 

 Procedure: 
•  Radioisotope is injected into or inhaled by patient  
•  Positron emission tomography (PET) or single photon emission computed tomography (SPECT) 

scanner is used to detect gamma rays produced by radioisotope 
•  Scanner measures the amount of metabolic activity at the site in the body and a computer 

reassembles the signals into images 
•  Provides information about function and metabolism of body’s organs unlike CT or MRI 
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Benefits of PET over SPECT:  
Science says it is better medicine 
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SPECT currently dominates cardiac imaging (95%), however PET is widely considered 
the future of cardiac imaging due to several advantages: 

  Improved accuracy, irrespective of body mass index and gender  
  Better resolution and less attenuation 
  Improved patient outcomes 
  Lower false positive rate 

  Lower radiation exposure to patient 

  Up to five times lower effective dose 

  Valuable data about both cardiac blood flow and heart tissue viability 

1Journal of Nuclear Medicine 2ASNC	
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IS PET’s DAY FINALLY HERE? SPECT SUPPLY challenges 

  Entire U.S. supply of 99mTC is imported and Chalk River reactor (provides 50% of U.S. 
supply) will shut down in 20161 

  There have been frequent disruptions in the supply chain since 2007, largely due to the 
aging of the five major reactors - all are over 40 years old 

  There will be a significant global shortage within 5 years without additional capacity 
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Global Mo-99 Supply: Age of Major Reactors	



Source:  Nuclear Energy Agency	


Source:  Triumf	



Global Mo-99 Supply and Demand 
Projections	
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PET with 13N  for cardiac imaging 

Superior imaging, leading to better patient outcomes: 

  Half life of 10 minutes 
  Fast patient throughput 
  Low radiation to patient and technician 

  Reliable supply of radioisotope 
  Frequent supply interruptions for SPECT and PET alternatives, 99mTC and 82Rb 
  Recent recall of rubidium-82 generators after radiation exposure detected at border 

crossings 

[Note that one can construct entirely the same science based case for 11C02 brain 
imaging for trauma medicine and Alzheimer’s Disease diagnosis.] 
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13N SOLUTION in a compact Sc cyclotron 

•  Despite significant advantages over alternatives in SPECT and PET, 13N has had two 
main limits to adoption:  
•  Half-life is only 10 minutes so you have to make it where you will use it 
•  However, few medical facilities have on-site cyclotrons due to size and cost 

•  Ultra-compact high field superconducting cyclotron system to provide superior blood 
flow imaging by enabling PET imaging agent 13N availability directly in a clinical setting 

19 

Isotron	
  PET 
Imaging 
Suite	





2 October 2012 
TA Antaya 

Compact High Field Classical Cyclotrons for N13? 

  Ionetix Isotron 13N Cyclotron 
  H+ ions with internal target 
  Final energy 12.5 MeV 
  First Operation late may 2012 

  CIEMAT AMIT 11C Cyclotron  
  H- ions with stripping extraction 
  Final energy ~11 MeV 
  ~4T guide field 
  Final Design and R&D in progress 
  First operation ~late 2013 
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Isotron N13 Demo Cyclotron- First beam 2 June 2012 
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Isotron Topology 
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Isotron scale? 

  About the same pole size as the 1932 Cyclotron but 160 times 
higher final proton energy 
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Isotron Dee/Resonator 
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CIEMAT AMIT 11C Cyclotron at 4T is similar in scale 
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Near Proximity Proton Active Interrogation 
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Physics…    Photofission of 235U 
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Near Proximity Active Interrogation- concept 
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100 cc U cube in 40 cm Fe block imaged with 
15.1 MeV gammas (MCNPX simulation) 	





2 October 2012 
TA Antaya 

Basically Same Topology as the N13 cyclotron, slightly 
lower energy, a little more compact would be good (higher 
field) 

1.0
m	



0.6
m	



  11B[d,nγ]12C* with deuterons 
at 4.5 MeV (essentially a 9 
MeV proton cyclotron) 

  Proof of Concept this Fall 
with the Isotron at MIT 

  Later- maybe better 
12C[p,γ]12C* at 19 MeV 
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Isotron Setup for High Power Operation 
MIT, October 2012 
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Cryogen Free Sc Magnets 

  An absolute necessity for all of the applications discussed 
  For systems with tight RAM requirements ,e.g. medical apps,  

built in cooling redundancy is necessary 
  This is best understood for PBRT- 24h is desired/48h is ‘tolerated’ 
  Other apps? Won’t fly if high field magnets prove unreliable 

  To make the system reasonable to deploy for LTS conductors- 
practically we are obliged to design for 1-1.5 watts of heat load 
at 4.2K 
  There may still be 2-3 cryocoolers in the design baseline:  one is 

essential, one is required for redundancy/recovery, one dedicated 
to the HTS leads  

  Conduction path/ heat removal may be complex, affecting the 
overall structural design, and leading to failures  

31 



2 October 2012 
TA Antaya 

Big Challenges 

  Cool down of a dry winding with Cryocoolers 
  Hard for magnet development:  

  Cycle times are of order a month 
  Cool downs are difficult to model and predict (structures are complex, databases 

insufficient at low temp) 
  Progress is slow if you get anything wrong 
  Testing with LHe is not useful 

  Recovery after a fault is measured in weeks- this is bad for a 
critical application 

  Heat transfer- everything (heat capacities, thermal 
conductivities, cooling capacity) are racing to zero 

  Training-  
  Force distributions favor free coils 
  Cooling favors a tightly bound coils  
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Heat Conduction in a Cryocooled Sc Magnet  

  dH/dt = -kA dT/dx :  
  residual heat at low temperature cannot be removed where ΔT is 

small 
  Gaps and joints in the heat conduction ‘pathway’ reduce ΔT at the 

lowest temperatures 
  At low temperature, helium has the highest thermal conductivity – 

this leads to some hybrid cryocooler/thermal siphon helium cooling 
systems 

  Analysis/Modeling of the cooldown and steady state operation 
  Complexity of the cold mass structure and contact resistances 

within the structure limit the effectiveness of thermal modeling 
  Thermal sensors on the cold mass are limited to reduce heat 

loads 
  Testing has a long time constant and can be frustrating- if the 

system does not cool down what when wrong? 
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Same System- small conduction adjustments 
(1800 lbs of mass cooled with one 1W CC) 
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Coil Training and Peak Stresses 

  Peak fields of order 7-8T for NbTi or 10-11T for Nb3Sn in the 
windings 

  High engineering current densities of order 10-20 kA/cm2   in 
the winding are preferred for fast quench propagation 

  With coil radii 0.2-0.5m, coils easily reach peak hoops stresses 
of order few hundred MPa  (9T synchrocyclotron 800 MPa) 

  Winding packs are compact (this is deliberate) and epoxy-glass 
composite structures are the preferred engineering solution 

Coil Training is likely! 
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And Painful! 
(Thermally bonded, high turn number, 0.5mm wire solenoid pair) 
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Suppose instead we opt for a ‘free coil’: 
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Cryocooler Mechanical Coupling is Non-trivial 

38 

Voltage Drops (mV)	



Power Supply	



HTS Leads	



Coils	



Cryocooler Shut Off	





2 October 2012 
TA Antaya 

Cryocooler Mechanical Coupling is Non-trivial 
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My Wish List to make these Applications Fly 

  Faster Cool down with a single installed cryocooler  higher 
temperature operation 

  Fast ramp capability in high inductance systems  Higher 
Cooling capacity,  

  Higher Cooling Capacity   Single stage cryocoolers 

  Single Stage Cryocoolers  higher temperature Sc magnets 

Dry winding- small solenoid, racetrack and 2θ, jeng ~20 kA/cm2, 
B~4T, dB/dT ~0.1T/s, T~30K, jBr ~150 MPa, predictable 
training, quantitative thermal structures 
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Starting in that direction- 2 Stage CC, 
single coil Nb3Sn wind and react solenoid coil test 
completed recently: 236A,  no training at 4K  ~100A @ 
10K which would work for small cyclotrons 
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What can LBNL Do? 

  30-35K, 4T, conductor, cable, winding pack development 
  Set of ‘Case Studies’-  

  standardized solenoid, race track, 2θ coils  
  self-consistent mechanical and thermal conducting structural 

designs with know training in the range of 4-8T 
  For standard manufacturing methods and materials selections 

  Publish and maintain a self-consistent low temperature 
materials dB 

  Coupled analyses as a service; training materials development 
for winding pack modeling and sub-modeling in ANSYS and 
other FEA codes 

  Better CC coupling structures – zero ΔT but vibration 
suppression 

  Replace Cu with He thermo-siphon ‘cells’ for heat conducting 
at low temperature; high heat removal w/o eddy currents  
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Why would this be important? 

  Helping directly couple advanced science and engineering into 
real work applications of some fair societal importance 

  Meaningful efforts for staff where they can see the impact of 
what they are doing in non-esoteric terms 

  You have key international resources in hand: people, facilities, 
codes, analysis methods, material databases, test facilities, 
benchmarks- in particular Nb3Sn, MgB2 and high force/stress 
mitigation; accelerator folks in near proximity to couple to 

Thank you for giving this opportunity to help start this discussion 
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Backup Slides 
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Cyclotrons 

  Are Circular Particle Accelerators: 
  Ion rotation frequency ω=QB/m  where Q is the ion charge 
  Ion Momentum p=QBr 

  Energy Range… 1 MeV - 1200 MeV 

  Ions accelerated…  H-, protons, molecular ions to Uranium 

  Intensities: picoamps to ~10 milliamps 

  Particle orbits in the guide field… ~a few to ~20,000 

  Energy Gain per orbit… few KeV to ~ 1 MeV 

  Acceleration in one stage is possible, CW operation possible 
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Cyclotrons and Special Relativity 

  ω=QB/m   … note that m=γm0 
  10 MeV proton   γ=1.01 
  250 MeV proton γ=1.26 
  1200 MeV proton γ=2.3 

  Ignore γ?  … Classical (Lawrence) Cyclotron 

  Compensate for γ 
  Allow the ion rotation to slow down by lowering the acceleration 

frequency … Synchrocyclotron 

  Hold the ion rotation frequency constant by raising the guide field 
… Isochronous Cyclotron 
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Cyclotron Orbit Stability 

  Beam Coordinates (Frenet-Serret) 

  Cyclotrons- cylindrical coordinates are such a coordinate sys 
  xr   yz  sϕ

  Guide magnetic field B is taken in the z direction


  To accelerate for 100 or even 20,000 orbits means that the 
motion in r and z is bounded… as best this means sinusoidal 
  r: let r=<r> + x   and the radial motion is  x” + (1-n)ω2x=0 
  z:   z” +nω2z=0 

  Generally you can show that the radial (x) motion is stable in 
cyclotrons so it comes down usually to axial (z) stability relative 
to the height of the magnet gap 
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Cyclotron Acceleration Frequency 

  Acceleration Frequency depends on the guide field B 

  Ion rotation frequency ω=QB/m as before 

  Take f=ω/2π  Q=Ze  and m=Au 

  f=15.36 MHz  ×  Z/A × B with B in Tesla 
  Protons 1 Tesla f=15.4 MHz 
  Protons 6 Tesla f=108 MHz  

  Note that ions can accelerate on multiples of the fundamental 
frequency  ωrf=hω where h=1,2,3,…. 
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Cyclotron Final Energy (T), Field (B) and Size (r) 

  Cyclotron Final Energy to zero order: 

  Tmax =KZ2/A;   

  Where  

  K=e2 rmax
2 Bmax

2/2u = 48.3 MeV ✕ rmax
2 Bmax

2 

  This is how we make cyclotrons compact: 
  Resistive Magnet Technology Bmax ~1-3T 
  NbTi Sc Magnet Technology Bmax ~4-6T 
  Nb3Sn Sc Magnet Technology Bmax ~8-10T 
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Cyclotrons and Superconductivity? 

  Usual Sc challenges: heat loads, conductor stability, quench & 
protection… 
  Cryocoolers have made it easier to deploy Sc cyclotrons 
  Close Loop Helium Thermo-siphon with multiple cryocoolers in a 

satellite dewar: Mevion maybe, Varian Proscan, IBA S2C2 
  Dry winding with a single cryocooler: Ionetix Isotron   

  In addition cyclotron systems must be fit in:  
  vacuum chamber, RF, ion source, probes & diagnostics, beam 

extraction systems 
  many of these systems must pass thru the cryostat wall in the 

radial direction 

  Scaling to High Field? 
  Current density and magnetic field in the coils goes up  
  High force densities, stored energy and decentering forces 
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Compact Superconducting Cyclotrons beyond 6T … 

•  Compact (a few cubic meters) 

•  Transportable (minimize the mass and power) 

•  Not tethered to a helium liquefier- cryo-coolers; HTS 
leads; many conductor types 

•  Full acceleration in 1 accelerator stage 

•  High Field Superconducting Cyclotron  (>6T): all 3 types 
are in play 

•  T= 10 - 1000 MeV protons and heavy ions 
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Classical Cyclotrons (ignore relativity) 

  First Cyclotrons in the 1930s-1940s 

  Final Energy is limited by the frequency error 
  Let Φ be the angular difference between when the ion crosses and 

acceleration gap and when it should cross to gain the maximum 
energy 

  ΔΦ ~ ωrf/ω – 1 
  1% mass increase representsan  ion crossing a gap late by 3.6° 
  90° phase shift takes just 25 turns 

  Max Final Energy ~20 MeV; practical limit (dee voltage) ~13-14 
MeV; ion phase space is large (weak focusing) 

  High Field Classical Cyclotron @6 Tesla reintroduced in 2012 
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Isochronous Cyclotrons 

  Most widely used cyclotron type 
  All ion species including being able to do variable ion species and 

variable final energy in one machine 
  High intensity, CW operation 

  Let B=γB0  where B0 is the value near the center 
  then  ω= QB/m = QγB0/γm0 = QB0/M0 is a constant and 

independent of mass change 

  Are a variation on strong focusing circular particle accelerators: 
  That B increases with radius unbounds the simple axial motion of 

classical and synchrocyclotrons  
  The field must vary azimuthally (flutter) to correct this axial beam 

blow up 
  Flutter is inversely proportional to the average field 

Are the hardest to scale to high field but we are working on that… 
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Compact High Field Isochronous Cyclotrons? Not Yet! 

Close 

  Harper Grace Neutron Therapy Cyclotron (MSU, 1992) 

  Varian 250 MeV Proton Beam Radiotherapy Cyclotron 
  1992 MSU design study – 250 MeV 2T average field 
  Commercialization started by ACCEL in 2001; machine install at 

PSI in 2005- first beam 2006 
  First patients treated with PSI machine in 2007 
  Second machine built for Reineker Center in Munich- patients 

treated in 2009 
  Machine 3-8 under construction near Cologne Germany with #3 

going to San Diego now 
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