

Precise Beam Dynamics Simulations: from High Power Cyclotron to (X)FEL Modeling

LBL - Wednesday, March 9 2011 Page 1 / 60

Key Figures 2010

PSI funds (global budget) External funding	~	249 60	MCHF MCHF
Staff	~	1400	PJ
Of which externally financed	~	370	PJ
Doctoral students	~	300	
Apprentices		80	
External users	~	2000	
Number of scientific publications	~	900	
PSI-employees with teaching duties at ETH and universities	~	80	

Precise Beam Dynamics Simulations: from High Power Cyclotron to (X)FEL Modeling

A. Adelmann (PSI-AMAS) Acknowledgments: Y. Ineichen Ch. Kraus (PSI) Y. Bi, J. Yang, Ch. Wang (CIAE) & S. Russel (LANL) SwissFEL Folks: B. Beutner, A. Falone, G L Orlandi and T. Schietinger

LBL - Wednesday, March 9 2011

Precise Beam Dynamics Simulations: from High Power Cyclotron to (X)FEL Modeling

LBL - Wednesday, March 9 2011 Page 3 / 60

Outline

Motivation & Problem Setup

2 The Models upon OPAL is based

OPAL and its Flavours

4 Simulation Results

- Precise Simulations of the PSI Ring Cyclotron
- Particle Matter Interaction
- Multipacting & Dark Current Modeling

5 The SwissFEL & the 250 MeV Accelerator Test Facility

Outline

- 2 The Models upon OPAL is based
- OPAL and its Flavours
- 4 Simulation Results
- 5 The SwissFEL & the 250 MeV Accelerator Test Facility

Why Precise Beam Dynamics Simulations?

- consider a n MW (Cyclotron) proton driver understanding halo
- H_2^+ versus a scheme with p (DAE δ ALUS)
- compact XFEL
 - providing 6D phase space at the undulator
 - bunch compression is a 3D process
 - transverse deflecting cavities
 - dark current & non uniform emission
 - many challenges of Bruce

Dark Current Simulations

(Dark Current)

Precise Beam Dynamics Simulations: from High Power Cyclotron to (X)FEL Modeling

LBL - Wednesday, March 9 2011 Page 7 / 60

The High Intensity Challenge

Consider a 0.59 GeV, 2.3 mA (CW) Proton Cyclotron facility.

- uncontrolled & controlled beam loss $O(2\mu A = const)$ in large and complex structures
- PSI Ring: 99.98% transmission $\rightarrow \mathcal{O}(10^{-4}) \rightarrow 4\sigma$
- small changes at injection affects extraction

The High Intensity Challenge

Consider a 0.59 GeV, 2.3 mA (CW) Proton Cyclotron facility.

- uncontrolled & controlled beam loss $O(2\mu A = const)$ in large and complex structures
- PSI Ring: 99.98% transmission $\rightarrow \mathcal{O}(10^{-4}) \rightarrow 4\sigma$
- small changes at injection affects extraction

Consequences for a Beam Dynamics Model

- Multiscale / Multiresolution
 - Maxwell's equations or reduced set combined with particles
 - N-body problem $n \sim 10^9$ per bunch in case of PSI
 - Spatial scales: $10^{-4} \dots 10^4$ (m) $\rightarrow \mathcal{O}(1e5)$ integration steps
 - $v \ll c \dots v \sim c$
 - Large (complicated structures)
 - Neighboring bunches
- Multiphysics
 - Particle mater interaction: monte carlo
 - Secondary particles i.e. multi specis

Given an appropriate **physics model** it is necessary to combining state of the art **numerical methods** together with a **massively parallel implementation**.

Outline

2 The Models upon OPAL is based

- OPAL and its Flavours
- 4 Simulation Results

5 The SwissFEL & the 250 MeV Accelerator Test Facility

Precise Beam Dynamics Simulations: from High Power Cyclotron to (X)FEL Modeling

LBL - Wednesday, March 9 2011 Page 10 / 60

Collision-less (non relativistic) Vlasov-Maxwell equation $f_s \subset (\mathbb{R}^3 \times \mathbb{R}^3), \mathbb{R}^3 : \to \mathbb{R}^3$ and s are the species.

$$\begin{split} & \frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \nabla_x f_s + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_v f_s = 0, \\ & \partial \!\!\!/ \mathcal{D} - c^2 \mathbf{curl} \, \mathbf{B} = \frac{\mathbf{J}}{\varepsilon_0}, \qquad \operatorname{div} \mathbf{E} = \frac{\rho}{\varepsilon_0}, \\ & \partial \!\!\!/ \mathcal{D} + \mathbf{curl} \, \mathbf{E} = 0, \qquad \operatorname{div} \mathbf{B} = 0, \end{split}$$
 Maxwell's equations

where the source terms are computed by

$$\rho = \sum_{s} q_s \int f_s \, d\mathbf{v}, \qquad \mathbf{J} = \sum_{s} q_s \int f_s \mathbf{v} \, d\mathbf{v}.$$

The electric and magnetic fields ${\bf E}$ and ${\bf B}$ are superpositions of external fields and self-fields (space charge),

$$\mathbf{E} = \mathbf{E}_{\mathrm{ext}} + \mathbf{E}_{\mathrm{sc}}, \quad \mathbf{B} = \mathbf{B}_{\mathrm{ext}} + \mathbf{B}_{\mathrm{sc}}.$$

Precise Beam Dynamics Simulations: from High Power Cyclotron to (X)FEL Modeling

LBL - Wednesday, March 9 2011 Page 11 / 60

If ${\bf E}$ and ${\bf B}$ are known, then each particle can be propagated according to the equation of motion for charged particles in an electromagnetic field,

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{v}, \quad \frac{d\mathbf{v}(t)}{dt} = \frac{q}{m_0} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right).$$

Maxwell's Equation in the Electrostatic approximation

Field Maps & Analytic Models $\begin{array}{l} \operatorname{div} \pmb{E}_{sc} = \rho/\varepsilon_0 = \operatorname{div} \nabla \phi_{sc} \\ \Delta \phi_{sc} = -\frac{\rho}{\varepsilon_0} \\ \& \; \mathsf{BC's} \end{array}$

Electro Magneto Optics

 $m{H}=m{H}_{\mathsf{ext}}+m{H}_{\mathsf{sc}}$

N-Body Dynamics

With G the 3D open space Green's function $G(\mathbf{x}, \mathbf{x}') = \frac{1}{\sqrt{(\mathbf{x}-\mathbf{x}')^2}}$ the solution of the Poisson equation at point \mathbf{x} can be expressed by

$$\phi_{sc}(\mathbf{x}) = \frac{1}{4\pi\varepsilon_0} \int G(\mathbf{x}, \mathbf{x}') \rho(\mathbf{x}, \mathbf{x}') d\mathbf{x}'.$$

Particle Matter Interaction & Space Charge

- Energy loss -dE/dx (Bethe-Bloch)
- Coulomb scattering is treated as two independent events:
 - multiple Coulomb scattering
 - large angle Rutherford scattering
- Field Emission Model (Fowler-Nordheim)
- Secondary Emission Model ([Furman & Pivi] & [Vaughan])

- Phenomenological- don't involve secondary physics but fit the data.
- Model 1 developed by M. Furmann and M. Pivi
- Model 2 (Vaughan) is easier to adapt to SEY curves

Outline

Motivation & Problem Setup

2 The Models upon OPAL is based

3 OPAL and its Flavours

4 Simulation Results

5 The SwissFEL & the 250 MeV Accelerator Test Facility

Precise Beam Dynamics Simulations: from High Power Cyclotron to (X)FEL Modeling

LBL - Wednesday, March 9 2011 Page 15 / 60

OPAL in a Nutshell

 $\rm OPAL$ is a tool for charged-particle optics in large accelerator structures and beam lines including 3D space charge and particle matter interaction

- OPAL is built from the ground up as a parallel application exemplifying the fact that HPC (High Performance Computing) is the third leg of science, complementing theory and the experiment
- $\bullet~\mathrm{OPAL}$ runs on your laptop as well as on the largest HPC clusters
- $\bullet~\mathrm{OPAL}$ uses the MAD language with extensions
- OPAL (and all other used frameworks) are written in C++ using OO-techniques, hence OPAL is very easy to extend.
- Documentation is taken very seriously at both levels: source code and user manual (http://amas.web.psi.ch/docs/index.html)
- Regression tests running evert day on the head of the repository

www.amas.psi.ch

OPAL and its Flavours

- 4 OPAL flavours exist:
 - OPAL-T
 - OPAL-T tracks particles which 3D space charge uses time as the independent variable, and can be used to model beamlines, guns, injectors and complete FEL's but without the undulator.
 - Field emission (dark current studies)
 - many more linac features ...
 - OPAL-envelope
 - OPAL-ENVELOPE is based on the 3D-envelope equation (à la HOMDYN) and can be used to design FEL's.
 - OPAL-ENVELOPE could also be used for an on-line model (incl. space charge)
 - same lattice than OPAL-T
 - OPAL-MAP (not yet released)
 - OPAL-MAP tracks particles with 3D space charge using split operator techniques.
 - $\mathcal{M}(s) = \mathcal{M}_{\text{ext}}(s/2) \otimes \mathcal{M}_{\text{sc}}(s) \otimes \mathcal{M}_{\text{ext}}(s/2) + \mathcal{O}(s^3)$

Precise Beam Dynamics Simulations: from High Power Cyclotron to (X)FEL Modeling

LBL - Wednesday, March 9 2011 Page 17 / 60

OPAL and its Flavours cont.

• OPAL-CYCL

- 3D space charge
- neighboring turns
- time is the independent variable.
- from p to Uranium (q/m is a parameter)
- Solve Poisson equation with spectral methods
- Use 4th-order RK and Leap Frog
- Single particle tracking mode & tune calculation
- Particle Matter Interaction
- Multipacting capabilities

OPAL is developed by an international collaboration including Los Alamos (LANL), China Institute of Atomic Energy (CIAE) and Tsinghua University, Beijing. Parallel I/O (H5hut) PSI-LBL collaboration.

A fast Direct FFT-Based Poisson Solver

Solving for ϕ using $\phi(\mathbf{x}) = \frac{1}{4\pi\varepsilon_0} \int G(\mathbf{x}, \mathbf{x}') \rho(\mathbf{x}, \mathbf{x}') d\mathbf{x}'$ is expensive $\mathcal{O}(N^2)$ with N number of particles.

1 Discretize $\rho \rightarrow \rho_h$ and $G \rightarrow G_h$ on a regular grid (PIC).

- **②** Go to Fourier space $\rho_h \to \hat{\rho}_h$, $G_h \to \hat{G}_h$ and convert the convolution into a multiplication $\mathcal{O}(\log N)$.
- Use a parallel FFT, particle and field load balancing.

Iterative Poisson Solver SAAMG-PCG

Boundary Problem

$$\begin{split} \Delta \phi &= -\frac{\rho}{\varepsilon_0} \text{, in } \Omega \subset \mathbb{R}^3, \\ \phi &= 0 \text{, on } \Gamma_1 \\ \frac{\partial \phi}{\partial \mathbf{n}} + \frac{1}{d} \phi &= 0 \text{, on } \Gamma_2 \end{split}$$

- $\Omega \subset \mathbb{R}^3$: simply connected computational domain
- ε_0 : the dielectric constant
- $\Gamma = \Gamma_1 \cup \Gamma_2$: boundary of Ω
- *d*: distance of bunch centroid to the boundary

- Γ_1 is the surface of an
 - elliptic beam-pipe
 - arbitrary beam-pipe element

Iterative Poisson Solver SAAMG-PCG cont.

We apply a second order finite difference scheme which leads to a set of linear equations

$$\mathbf{A}\mathbf{x} = \mathbf{b},$$

where **b** denotes the charge densities on the mesh.

- solve anisotropic electrostatic Poisson PDE with an iterative solver
- reuse information available from previous time steps
- achieving good parallel efficiency
- irregular domain with "exact" boundary conditions
- easy to specify boundary surface

[A. Adelmann, P. Arbenz and Y. Ineichen]

SAAMG-PCG Parallel Efficiency

- obtained for a tube embedded in a $1024 \times 1024 \times 1024$ grid
- construction phase is performing the worst with an efficiency of 73%
- influence of problem size on the low performance of the aggregation in ML

3D Geometry Handling Capability of OPAL

- Read in surface mesh generated by Heronion or GMSH
- Triangulated surface representation of geometry

- Triangle-line segment intersection
- Boundary bounding box to speedup the collision tests
- We can handle arbitrary structure as long as it is closed

Parallel I/O (H5hut) & Postprocessing (H5Root)

Precise Beam Dynamics Simulations: from High Power Cyclotron to (X)FEL Modeling

LBL - Wednesday, March 9 2011 Page 25 / 60

Outline

1 Motivation & Problem Setup

2 The Models upon OPAL is based

OPAL and its Flavours

④ Simulation Results

- Precise Simulations of the PSI Ring Cyclotron
- Particle Matter Interaction
- Multipacting & Dark Current Modeling

5 The SwissFEL & the 250 MeV Accelerator Test Facility

Outline

1 Motivation & Problem Setup

2 The Models upon OPAL is based

OPAL and its Flavours

4 Simulation Results

- Precise Simulations of the PSI Ring Cyclotron
- Particle Matter Interaction
- Multipacting & Dark Current Modeling

5 The SwissFEL & the 250 MeV Accelerator Test Facility

PSI HIPA Overview

Precise Beam Dynamics Simulations: from High Power Cyclotron to (X)FEL Modeling

LBL - Wednesday, March 9 2011 Page 28 / 60

OPAL-T Simulations of the PSI IW2 Line (72 MeV p)

Production run setup (2.2 mA)

LBL - Wednesday, March 9 2011 Page 29 / 60

Comparison of beam profile monitors in the PSI-IW2 Line

Comparison of beam losses on the slits with measurements

PSI 590 MeV Ring - last 8 turns

- initial conditions from 72 MeV transfer line simulation (OPAL-T)
- rf parameters from control room
- using measured mid-plane field and analytic trim-coil (tc15)
- single particle run to verify tun numbers and tunes

PSI 590 MeV Ring - last 8 turns @ 2.2 mA

Neighboring Bunch Effects- Multi Bunch Model

In the model, the injection-to-extraction simulation is divided into two stages:

- First stage, big $\Delta r \Rightarrow$ single bunch tracking
- **2** Second stage, small $\Delta r \Rightarrow$ multiple bunches tracking
- Full 3D
- Energy bins & re-binning
- Large grids needed

PSI 590MeV Ring

Single bunch and multiple bunches at turn 80 and 130

[J. Yang, Adelmann]

Outline

1 Motivation & Problem Setup

2 The Models upon OPAL is based

OPAL and its Flavours

4 Simulation Results

- Precise Simulations of the PSI Ring Cyclotron
- Particle Matter Interaction
- Multipacting & Dark Current Modeling

5 The SwissFEL & the 250 MeV Accelerator Test Facility

Particle Matter Interaction

- Energy loss -dE/dx (Bethe-Bloch)
- Coulomb scattering is treated as two independent events: the multiple Coulomb scattering and the large angle Rutherford scattering
- Space charge & halo generated by the obstacle

A 72 MeV cold Gaussian beam with $\sigma_x = \sigma_y = 5$ mm passing a copper slit with the half aperture of 3 mm from 0.01 m to 0.1 m.

Particle Matter Interaction cont.

Particle Matter Interaction cont.

Precise Beam Dynamics Simulations: from High Power Cyclotron to (X)FEL Modeling

LBL - Wednesday, March 9 2011 Page 39 / 60

Outline

1 Motivation & Problem Setup

2 The Models upon OPAL is based

OPAL and its Flavours

4 Simulation Results

- Precise Simulations of the PSI Ring Cyclotron
- Particle Matter Interaction
- Multipacting & Dark Current Modeling

5 The SwissFEL & the 250 MeV Accelerator Test Facility

Multipacting & Dark Current Modeling

- Benchmark Against the TxPhysics Library
- Validate the implementation of Furman-Pivi's model
- Logarithm of total secondary emission number (backscattered + re-diffused + true secondaries) vs. energy of emitted particles

Multipacting & Dark Current Modeling cont.

- Benchmarking the secondary emission model is not sufficient!
 - There double-side(ds) and single-side(ss) impacting exist
 - This is the most complete description of multipacting [S. Anza et al]!

Multipacting & Dark Current Modeling cont.

f = 200MHz, $V_0 = 120V$, d = 5mm, Furman-Pivi's model, copper and re-normalize to a const number of simulation particle

Precise Beam Dynamics Simulations: from High Power Cyclotron to (X)FEL Modeling

LBL - Wednesday, March 9 2011 Page 43 / 60

Outline

Motivation & Problem Setup

2 The Models upon OPAL is based

3 OPAL and its Flavours

4 Simulation Results

5 The SwissFEL & the 250 MeV Accelerator Test Facility

Precise Beam Dynamics Simulations: from High Power Cyclotron to (X)FEL Modeling

LBL - Wednesday, March 9 2011 Page 44 / 60

The SwissFEL http://www.psi.ch/swissfel/

Precise Beam Dynamics Simulations: from High Power Cyclotron to (X)FEL Modeling

LBL - Wednesday, March 9 2011 Page 45 / 60

The SwissFEL http://www.psi.ch/swissfel/

The SwissFEL cont.

ay, March 9 2011 Page 46 / 60

The SwissFEL cont.

E	5.8	(GeV)
P	5	(MW)
f_{ren}	100	(Hz)
λ	$1 \dots 70$	(Å)
L	713	(m)

- RF-Photo Gun (PSI development)
- frequency tripl. TiSa Laser
- S,C and X-Band RF structures
- norm. conducting

The 250 MeV Test Injector

What is primarily indispensable to get SwissFEL lasing?

20 pC	200 pC	
250	250	(MeV)
< 50	< 50	(keV)
0.15	0.5	(mm-mr)
0.11	< 0.4	(mm-mr)
100	350	(A)
	20 pC 250 < 50 0.15 0.11 100	$\begin{array}{c cccc} 200 \text{ pC} & 200 \text{ pC} \\ \hline 250 & 250 \\ < 50 & < 50 \\ 0.15 & 0.5 \\ 0.11 & < 0.4 \\ 100 & 350 \end{array}$

Table: Critical Parameter to reach @ 250 MeV

Benchmarking OPAL-T & Astra

 $\rm OPAL\mathchar`-T$ simulation of the CTF3 gun and 2 S-band TW structures and solenoids.

Table: Initial conditions

σ_x	249	μ m
σ_y	249	μm
Q	200	pС
$t_{\rm fwhm}$	9.9	ps
$t_{\rm rise} = t_{\rm fall}$	0.782	ps
$E_{\rm th}$	0.65	eV
ϕ_{gun}	-3.5	deg
ϕ_{tw1}	0.0	deg
ϕ_{tw2}	0.0	deg

OPAL Astra E_{final} 130.249130.290(MeV) 213.22 (keV) ΔE_{final} 184.79 ε_x rms 0.469900.49075(mm-mr) 377.648412.510 (μm) x rms809.092 826.860 (μm) z rms

Table: Q = 200 pC at 12 m

Both codes run autophase

Benchmarking OPAL-T & Astra cont.

Precise Beam Dynamics Simulations: from High Power Cyclotron to (X)FEL Modeling

LBL - Wednesday, March 9 2011 Page 50 / 60

Comparing Simulations with Reality

OPAL-T simulation of the CTF3 gun, including thermal emittance (0.65 eV) and laser profile (0.7 ps rise time 9.8 ps flat-top).

The SwissFEL is a very compact machine

J. Rossbach / Univ. HH&DESY - Inauguration SwissFEL Injektor 24.8.2010

Precise Beam Dynamics Simulations: from High Power Cyclotron to (X)FEL Modeling

LBL - Wednesday, March 9 2011 Page 52 / 60

References

- A. Adelmann, P. Arbenz and Y. Ineichen, J. Comp. Phys, 229 (12): 4554-4566 (2010)
- M. A. Furman and M. Pivi, Phys. Rev. ST Accel. Beams 5, 124404 (2002)
- S. Anza, C. Vicente, J. Gil, V. E. Boria, B. Gimeno, and D. Raboso, Phys. Plasmas 17, 062110 2010
- Y. Bi, A. Adelmann et.al submitted Phys. Rev. STAB and http://arxiv.org/abs/1012.0718
- J. Yang, Adelmann et.al, Phys. Rev. STAB Volume 13 Issue 6 064201 (2010)

J. R. M. Vaughan, IEEE Transactions on Electron Devices 40, 830 (Apr 1993)

Backup

GME:GEOMETRY, LENGTH=1, S=0.0, A=0.00085, B=0.00085;

Fs1:FIELDSOLVER, FSTYPE=MG, MX=32, MY=32, MT=64, PARFFTX=false, PARFFTY=false, PARFFTT=true, BCFFTX=dirichlet, BCFFTY=dirichlet, BCFFTT=open, GEOMETRY="GME", ITSOLVER="CG", INTERPL="linear", TOL=1e-6, MAXITERS=100, PRECMODE="reuse";

Fs2:FIELDSOLVER, FSTYPE=FFT, MX=32, MY=32, MT=64, PARFFTX=false, PARFFTY=false, PARFFTT=true, BCFFTX=open, BCFFTY=open, BCFFTT=open, BOXINCR=1.0, GREENSF=INTEGRATED;

beam1: BEAM, PARTICLE=ELECTRON, PC=PO, NPART=1e5, BFREQ=1498.953425154e6, BCURRENT=0.299598, CHARGE=-1;

SELECT, LINE=FIND1;


```
TRACK,LINE=FIND1, BEAM=beam1, MAXSTEPS=10000, DT=1.0e-12;
RUN, METHOD = "PARALLEL-T", BEAM=beam1,
FIELDSOLVER=Fs2, DISTRIBUTIONS={Dist1,Dist2};
endtrack;
```

```
f1: Filter, TYPE="FixedFFTLowPass", NFREQ=9;
f2: Filter, TYPE="Savitzky-Golay", NLEFT=64,
NRIGHT=64,POLYORDER=1;
CSRWAKE: Wake, TYPE="1D-CSR", FILTERS={f2, f1};
```

```
F10BC_MB01: RBend, L=0.282000, K0=0.1585,
FMAPFN="F10BC-MB01.T7", ELEMEDGE=29.964,
ALPHA=3.035, DESIGNENERGY=247.6, WAKEF=CSRWAKE;
```



```
KX11_PHYS: SurfacePhysics, TYPE="Collimator",MATERIAL="Cu";
```

```
KX0I: ECollimator, L=0.09, ELEMEDGE=0.01,
XSIZE=0.003, YSIZE=0.003,
APERTURE={0.003,0.003},SURFACEPHYSICS='KX11_PHYS';
```

```
DR1:DRIFT, L=0.09, ELEMEDGE=0.01,
APERTURE={0.003,0.003}, SURFACEPHYSICS='KX1I_PHYS';
```

```
QXA1:QUADRUPOLE,L=0.19,ELEMEDGE=0.11,K1=1.0,
APERTURE={0.003,0.003}, SURFACEPHYSICS='KX11_PHYS';
```

MXPOO: Monitor, L=0.002, ELEMEDGE=0.1, OUTFN="MXPOO.h5";

```
IW2Line: Line=(MXP00,KX0I);
```


870 keV Injection Line

Simulation and measurement DC beam 870 keV

Find \mathcal{D}_{start} and ν_e by min(F): $F = \sum_{n=1}^{\#monitors} (\widetilde{\mathcal{X}}_{mea}(s_n) - \widetilde{\mathcal{X}}_{sim}(s_n))^2.$

870 keV Injection Line

Simulation and measurement DC beam 870 keV

OPAL Architecture

- OPAL Object Oriented Parallel Accelerator Library
- IP²L Independent Parallel Particle Layer
- Class Library for Accelerator Simulation System and Control
- H5hut for parallel particle and field I/O (HDF5)
- Trilinos http://trilinos.sandia.gov/

OPAL Parallel Scaling on Cray XT5 (FFT Solver)

- $\bullet~{\rm Tracking}~10^8$ Gaussian distributed particles
- $\bullet~$ 3D FFT on a $1024^3~{\rm grid}$

